
Diving Deep
into Kubernetes
Networking

2022

White Paper

Diving Deep into Kubernetes Networking2 suse.com

Introduction	 3

Goals for this book	 3	

How this book is organized	 3

An Introduction to networking with Docker	 4

	Docker networking types	 4

Container-to-Container Communication	 10

Container Communication between hosts	 12

Interlude: Netfilter and Iptables rules	 13

	The Filter Table	 13

	The NAT Table	 13

	The Mangle Table	 13

	Raw Table	 13

	Security Table	 13

An Introduction to Kubernetes Networking	 15

	POD Networking	 16

	Service Mesh	 19

	Network Policy	 20

	Contatiner Network Interface	 26

Networking with Flannel	 28

	Running Flannel with Kubernetes	 28

	Flannel Backends	 29

Networking with Calico	 31

	Architecture	 31

	Install Calico with Kubernetes	 31

	Using BGP for Route Announcements	 33

	Using IP-in-IP	 36

Networking with Multus CNI	 37

	Architecture	 37

	Install Multus with Kubernetes	 38

Contents
Networking with Cilium	 43

	Architecture	 43

	Install Cilium with Kubernetes	 45

Networking with Kube-vip	 49

	Architecture	 49

	Install Kube-vip with Kubernetes	 50

Networking with MetalLB	 56

	Architecture	 56

	Install MetalLB with Kubernetes	 56

Load Balancers and Ingress Controllers	 59

	The benefits of Load Balancers	 59

Networking with Flannel and Calico (Canal)	 63

	Load Balancing in Kubernetes 	 63

Conclusion	 70

Diving Deep into Kubernetes Networking3 suse.com

Introduction
Kubernetes has evolved into a strategic platform for deploying
and scaling applications in data centers and the cloud. It
provides built-in abstractions for efficiently deploying, scaling,
and managing applications. Kubernetes also addresses
concerns such as storage, networking, load balancing, and
multi-cloud deployments.

Networking is a critical component for the success of a Kubernetes implementation. Network components in a
Kubernetes cluster control interaction at multiple layers, from communication between containers running on
different hosts to exposing services to clients outside of a cluster. The requirements within each environment are
different, so before we choose which solution is the most appropriate, we have to understand how networking
works within Kubernetes and what benefits each solution provides.

Goals for this book
This book introduces various networking concepts related to Kubernetes that an operator, developer, or decision
maker might find useful. Networking is a complex topic and even more so when it comes to a distributed system
like Kubernetes. It is essential to understand the technology, the tooling, and the available choices. These
choices affect an organization’s ability to scale the infrastructure and the applications running on top of it.

The reader is expected to have a basic understanding of containers, Kubernetes, and operating system
fundamentals.

How this book is organized
In this book, we cover Kubernetes networking from the basics to the advanced topics. We start by explaining
Docker container networking, as Docker is a fundamental component of Kubernetes. We then introduce Kubernetes
networking, its unique model and how it seamlessly scales. In doing so, we explain the abstractions that enable
Kubernetes to communicate effectively between applications. We touch upon the Container Network Interface
(CNI) specification and how it relates to Kubernetes, and finally, we do a deep dive into some of the more popular
CNI plugins for Kubernetes including Flannel, Calico, Multus CNI, Cilium, Kube-Vip, and MetalLB. We discuss load
balancing, DNS and how to expose applications to the outside world.

This eBook covers Kubernetes networking concepts, but we do not intend for it to be a detailed explanation of
Kubernetes in its entirety. For more information on Kubernetes, we recommend reading the eBook, Kubernetes
Management for Dummies as well as the Kubernetes documentation.

https://more.suse.com/fy21-global-web-landing-page-kubernetes-management-for-dummies-rancher-and-suse-0-0
https://more.suse.com/fy21-global-web-landing-page-kubernetes-management-for-dummies-rancher-and-suse-0-0

Diving Deep into Kubernetes Networking4 suse.com

An Introduction to Networking
with Docker
Docker follows a unique approach to networking that is very
different from the Kubernetes approach. Understanding how
Docker works help later in understanding the Kubernetes model,
since Docker containers are the fundamental unit of deployment
in Kubernetes.

Docker Networking Types
When a Docker container launches, the Docker engine assigns it a network interface with an IP address, a default
gateway, and other components, such as a routing table and DNS services. By default, all addresses come from
the same pool, and all containers on the same host can communicate with one another. We can change this by
defining the network to which the container should connect, either by creating a custom user-defined network or by
using a network provider plugin.

The network providers are pluggable using drivers. We connect a Docker container to a particular network by using
the --net switch when launching it.

The following command launches a container from the busybox image and joins it to the host network. This
container prints its IP address and then exits.

Docker offers five network types, each with a different capacity for communication with other network entities.

a)	 �Host Networking: The container shares the same IP address and network namespace as that of the host.
Services running inside of this container have the same network capabilities as services running directly on the
host.

b)	� Bridge Networking: The container runs in a private network internal to the host. Communication is open to other
containers in the same network. Communication with services outside of the host goes through network address
translation (NAT) before exiting the host. (This is the default mode of networking when the --net option isn’t
specified)

c)	 �Custom bridge network: This is the same as Bridge Networking but uses a bridge explicitly created for this (and
other) containers. An example of how to use this would be a container that runs on an exclusive “database”
bridge network. Another container can have an interface on the default bridge and the database bridge,
enabling it to communicate with both networks.

d)	� Container-defined Networking: A container can share the address and network configuration of another
container. This type enables process isolation between containers, where each container runs one service but
where services can still communicate with one another on the localhost address.

e)	� No networking: This option disables all networking for the container.

docker run --rm --net=host busybox ip addr

Diving Deep into Kubernetes Networking5 suse.com

Host Networking
The host mode of networking allows the Docker container to
share the same IP address as that of the host and disables the
network isolation otherwise provided by network namespaces. The
container’s network stack is mapped directly to the host’s network
stack. All interfaces and addresses on the host are visible within the
container, and all communication possible to or from the host is
possible to or from the container.

If you run the command ip addr on a host (or ifconfig -a if your host doesn’t have the ip command available),
you will see information about the network interfaces.

If you run the same command from a container using host networking, you will see the same information.

container

eth0

Diving Deep into Kubernetes Networking6 suse.com

Bridge Networking
In a standard Docker installation, the Docker daemon
creates a bridge on the host with the name of docker0.
When a container launches, Docker then creates a
virtual ethernet device for it. This device appears within
the container as eth0 and on the host with a name like
vethxxx where xxx is a unique identifier for the interface.
The vethxxx interface is added to the docker0 bridge,
and this enables communication with other containers
on the same host that also use the default bridge.

To demonstrate using the default bridge, run the following command on a host with Docker installed. Since we are
not specifying the network - the container will connect to the default bridge when it launches.

Run the ip addr and ip route commands inside of the container. You will see the IP address of the container with
the eth0 interface:

In another terminal connected to the host, run the ip addr command. You will see the corresponding interface
created for the container. In the image below it is named veth5dd2b68@if9. Yours will be different.

container

eth0

eth0

docker0 bridge

vethxxx vethyyy

container

eth0

ip tables

Diving Deep into Kubernetes Networking7 suse.com

Although Docker mapped the container IPs on the bridge, network services running inside of the container are not
visible outside of the host. To make them visible, the Docker Engine must be told when launching a container to map
ports from that container to ports on the host. This process is called publishing. For example, if you want to map
port 80 of a container to port 8080 on the host, then you would have to publish the port as shown in the following
command:

By default, the Docker container can send traffic to any destination. The Docker daemon creates a rule within
Netfilter that modifies outbound packets and changes the source address to be the address of the host itself. The
Netfilter configuration allows inbound traffic via the rules that Docker creates when initially publishing the container’s
ports.

The output included below shows the Netfilter rules created by Docker when it publishes a container’s ports.

docker run --name nginx -p 8080:80 nginx

Diving Deep into Kubernetes Networking8 suse.com

The next image shows the NAT table within Netfilter:

Custom Bridge Network
There is no requirement to use the default bridge on the host; it’s easy to create a new bridge network and attach
containers to it. This provides better isolation and interoperability between containers, and custom bridge networks
have better security and features than the default bridge.

	— 	All containers in a custom bridge can communicate with the ports of other containers on that bridge. This means
that you do not need to publish the ports explicitly. It also ensures that the communication between them is
secure. Imagine an application in which a backend container and a database container need to communicate
and where we also want to make sure that no external entity can talk to the database. We do this with a custom
bridge network in which only the database container and the backend containers reside. You can explicitly
expose the backend API to the rest of the world using port publishing.

	— The same is true with environment variables - environment variables in a bridge network are shared by all
containers on that bridge.

	— Network configuration options such as MTU can
differ between applications. By creating a bridge,
you can configure the network to best suit the
applications connected to it.

To create a custom bridge network and two containers
that use it, run the following commands:

$docker network create mynetwork

$docker run -it --rm --name=container-a
--network=mynetwork busybox /bin/sh

$docker run -it --rm --name=container-b
--network=mynetwork busybox /bin/sh

Diving Deep into Kubernetes Networking9 suse.com

Container-defined Network
A specialized case of custom networking is when a container joins the network of another container. This is similar to
how a Pod works in Kubernetes.

The following commands launch two containers that share the same network namespace and thus share the same
IP address. Services running on one container can talk to services running on the other via the localhost address.

No Networking
This mode is useful when the container does not need to communicate with other containers or
with the outside world. It is not assigned an IP address, and it cannot publish any ports.

$docker run -it --rm --name=container-a busybox /bin/sh

$docker run -it --rm --name=container-b --network=container:container-a busybox /bin/sh

docker run --net=none --name busybox busybox ip a

Diving Deep into Kubernetes Networking10 suse.com

Container-to-Container Communication
How do two containers on the same bridge network talk to one another?

In the above diagram, two containers running on the same host connect via the docker0 bridge. If 172.17.0.6 (on
the left-hand side) wants to send a request to 172.17.0.7 (the one on the right-hand side), the packets move as
follows:

1.	� A packet leaves the container via eth0 and lands on the corresponding vethxxx interface.

2.	� The vethxxx interface connects to the vethyyy interface via the docker0 bridge.

3.	� The docker0 bridge forwards the packet to the vethyyy interface.

4.	� The packet moves to the eth0 interface within the destination container.

We can see this in action by using ping and tcpdump. Create two containers and inspect their network configuration
with ip addr and ip route. The default route for each container is via the eth0 interface.

eth0

docker0 bridge

vethxxx vethyyy

Container

ip tables

eth0
172.17.0.7/16

Container

Packet

eth0
172.17.0.6/16

src: 172.17.0.6/16
dest: 172.17.0.7

1

2

4

3

Diving Deep into Kubernetes Networking11 suse.com

Ping one container from the other, and let the command run so that we can inspect the traffic. Run tcpdump
on the docker0 bridge on the host machine. You will see in the output that the traffic moves between the two
containers via the docker0 bridge.

Diving Deep into Kubernetes Networking12 suse.com

Container Communication Between Hosts

So far we have discussed scenarios in which containers communicate within a single host. While interesting, real-
world applications require communication between containers running on different hosts.

Cross-host networking usually uses an overlay network, which builds a mesh between hosts and employs a large
block of IP addresses within that mesh. The network driver tracks which addresses are on which host and shuttles
packets between the hosts as necessary for inter-container communication.

Overlay networks can be encrypted or unencrypted. Unencrypted networks are acceptable for environments in
which all of the hosts are within the same LAN, but because overlay networks enable communication between hosts
across the Internet, consider the security requirements when choosing a network driver. If the packets traverse a
network that you don’t control, encryption is a better choice.

The overlay network functionality built into Docker is called Swarm. When you connect a host to a swarm, the Docker
engine on each host handles communication and routing between the hosts.

Other overlay networks exist, such as IPVLAN, VxLAN, and MACVLAN. More solutions are available for Kubernetes.

For more information on pure-Docker networking implementations for cross-host networking (including Swarm
mode and libnetwork), please refer to the documentation available at the Docker website, https://docs.docker.com/.

https://docs.docker.com/

Diving Deep into Kubernetes Networking13 suse.com

Interlude: Netfilter and iptables rules
In the earlier section on Docker networking, we looked at how
Docker handles communication between containers. On a Linux
host, the component which handles this is called Netfilter, or more
commonly by the command used to configure it: iptables.

Netfilter manages the rules that define network communication for the Linux kernel. These rules permit, deny, route,
modify, and forward packets. It organizes these rules into tables according to their purpose.

The Filter Table
Rules in the Filter table control if a packet is allowed or denied. Packets which are allowed are forwarded whereas
packets which are denied are either rejected or silently dropped.

The NAT Table
These rules control network address translation. They modify the source or destination address for the packet,
changing how the kernel routes the packet.

The Mangle Table
The headers of packets which go through this table are altered, changing the way the packet behaves. Netfilter
might shorten the TTL, redirect it to a different address, or change the number of network hops.

Raw Table
This table marks packets to bypass the iptables stateful connection tracking.

Security Table
This table sets the SELinux security context marks on packets. Setting the marks affects how SELinux (or systems that
can interpret SELinux security contexts) handle the packets. The rules in this table set marks on a per-packet or per-
connection basis.

Netfilter organizes the rules in a table into chains. Chains are the means by which Netfilter hooks in the kernel
intercept packets as they move through processing. Packets flow through one or more chains and exit when they
match a rule.

Diving Deep into Kubernetes Networking14 suse.com

A rule defines a set of conditions, and if the packet matches those conditions, an action is taken. The universe of
actions is diverse, but examples include:

	— Block all connections originating from a specific IP address.

	— Block connections to a network interface.

	— Allow all HTTP/HTTPS connections.

	— Block connections to specific ports.

The action that a rule takes is called a target, and represents the decision to accept, drop, or forward the packet.

The system comes with five default chains that match different phases of a packet’s journey through processing:
PREROUTING, INPUT, FORWARD, OUTPUT, and POSTROUTING. Users and programs may create additional chains and
inject rules into the system chains to forward packets to a custom chain for continued processing. This architecture
allows the Netfilter configuration to follow a logical structure, with chains representing groups of related rules.

Docker creates several chains, and it is the actions of these chains that handle communication between containers,
the host, and the outside world.

Diving Deep into Kubernetes Networking15 suse.com

An Introduction to Kubernetes
Networking
Kubernetes networking builds on top of the Docker and Netfilter
constructs to tie multiple components together into applications.
Kubernetes resources have specific names and capabilities, and we
want to understand those before exploring their inner workings.

Pods
The smallest unit of deployment in a Kubernetes cluster is the Pod, and all of the constructs related to scheduling
and orchestration assist in the deployment and management of Pods.

In the simplest definition, a Pod encapsulates one or more containers. Containers in the same Pod always run on the
same host. They share resources such as the network namespace and storage.

Each Pod has a routable IP address assigned to it, not to the containers running within it. Having a shared network
space for all containers means that the containers inside can communicate with one another over the localhost
address, a feature not present in traditional Docker networking.

The most common use of a Pod is to run a single container. Situations where different processes work on the same
shared resource, such as content in a storage volume, benefit from having multiple containers in a single Pod. Some
projects inject containers into running Pods to deliver a service. An example of this is the Istio service mesh, which
uses this injected container as a proxy for all communication.

Because a Pod is the basic unit of deployment, we can map it to a single instance of an application. For example, a
three-tier application that runs a user interface (UI), a backend, and a database would model the deployment of the
application on Kubernetes with three Pods. If one tier of the application needed to scale, the number of Pods in that
tier could scale accordingly.

Workloads
Production applications with users run more than one instance of the application. This enables fault tolerance, where
if one instance goes down, another handles the traffic so that users don’t experience a disruption to the service.
In a traditional model that doesn’t use Kubernetes, these types of deployments require that an external person or
software monitors the application and acts accordingly.

Kubernetes recognizes that an application might have unique requirements. Does it need to run on every host?
Does it need to handle state to avoid data corruption? Can all of its pieces run anywhere, or do they need special
scheduling consideration? To accommodate those situations where a default structure won’t give the best results,
Kubernetes provides abstractions for different workload types.

Diving Deep into Kubernetes Networking16 suse.com

ReplicaSet

The ReplicaSet maintains the desired number of copies of a Pod running within the cluster. If a Pod or the host on
which it’s running fails, Kubernetes launches a replacement. In all cases, Kubernetes works to maintain the desired
state of the ReplicaSet.

Deployment

A Deployment manages a ReplicaSet. Although it’s possible to launch a ReplicaSet directly or to use a
ReplicationController, the use of a Deployment gives more control over the rollout strategies of the Pods that the
ReplicaSet controller manages. By defining the desired states of Pods through a Deployment, users can perform
updates to the image running within the containers and maintain the ability to perform rollbacks.

DaemonSet

A DaemonSet runs one copy of the Pod on each node in the Kubernetes cluster. This workload model provides the
flexibility to run daemon processes such as log management, monitoring, storage providers, or network providers
that handle Pod networking for the cluster.

StatefulSet

A StatefulSet controller ensures that the Pods it manages have durable storage and persistent identity. StatefulSets
are appropriate for situations where Pods have a similar definition but need a unique identity, ordered deployment
and scaling, and storage that persists across Pocd rescheduling.

Pod Networking
The Pod is the smallest unit in Kubernetes, so it is essential to first understand Kubernetes networking in the context
of communication between Pods. Because a Pod can hold more than one container, we can start with a look at
how communication happens between containers in a Pod. Although Kubernetes can use Docker for the underlying
container runtime, its approach to networking differs slightly and imposes some basic principles:

	— Any Pod can communicate with any other Pod without the use of network address translation (NAT). To facilitate
this, Kubernetes assigns each Pod an IP address that is routable within the cluster.

	— A node can communicate with a Pod without the use of NAT.

	— A Pod’s awareness of its address is the same as how other resources see the address. The host’s address doesn’t
mask it.

These principles give a unique and first-class identity to every Pod in the cluster. Because of this, the networking
model is more straightforward and does not need to include port mapping for the running container workloads. By
keeping the model simple, migrations into a Kubernetes cluster require fewer changes to the container and how it
communicates.

Diving Deep into Kubernetes Networking17 suse.com

The Pause Container

A piece of infrastructure that enables many networking features in Kubernetes is known as the pause container. This
container runs alongside the containers defined in a Pod and is responsible for providing the network namespace
that the other containers share. It is analogous to joining the network of another container that we described in the
User Defined Network section above.

The pause container was initially designed to act as the init process within a PID namespace shared by all
containers in the Pod. It performed the function of reaping zombie processes when a container died. PID namespace
sharing is now disabled by default, so unless it has been explicitly enabled in the kubelet, all containers run their
process as PID 1.

If we launch a Pod running Nginx, we can inspect the Docker container running within the Pod.

When we do so, we see that the container does not have the network settings provided to it. The pause container
which runs as part of the Pod is the one which gives the networking constructs to the Pod.

Note: Run the commands below on the host where the nginx Pod is scheduled.

Diving Deep into Kubernetes Networking18 suse.com

Intra-Pod Communication

Kubernetes follows the IP-per-Pod model where it assigns a routable IP address to the Pod. The containers within
the Pod share the same network space and communicate with one another over localhost. Like processes running
on a host, two containers cannot each use the same network port, but we can work around this by changing the
manifest.

Inter-Pod Communication

Because it assigns routable IP addresses to each Pod, and because it requires that all resources see the address of a
Pod the same way, Kubernetes assumes that all Pods communicate with one another via their assigned addresses.
Doing so removes the need for an external service discovery mechanism.

Kubernetes Service

Pods are ephemeral. The services that they provide may be critical, but because Kubernetes can terminate Pods at
any time, they are unreliable endpoints for direct communication. For example, the number of Pods in a ReplicaSet
might change as the Deployment scales it up or down to accommodate changes in load on the application, and it
is unrealistic to expect every client to track these changes while communicating with the Pods. Instead, Kubernetes
offers the Service resource, which provides a stable IP address and balances traffic across all of the Pods behind it.
This abstraction brings stability and a reliable mechanism for communication between microservices.

Services which sit in front of Pods use a selector and labels to find the Pods they manage. All Pods with a label that
matches the selector receive traffic through the Service. Like a traditional load balancer, the service can expose the
Pod functionality at any port, irrespective of the port in use by the Pods themselves.

Kube-proxy

The kube-proxy daemon that runs on all nodes of the cluster allows the Service to map traffic from one port to
another.

This component configures the Netfilter rules on all of the nodes according to the Service’s definition in the API
server. From Kubernetes 1.9 onward it uses the netlink interface to create IPVS rules. These rules direct traffic to the
appropriate Pod.

Kubernetes Service Types

A service definition specifies the type of Service to deploy, with each type of Service having a different set
of capabilities.

ClusterIP

This type of Service is the default and exists on an IP that is only visible within the cluster. It enables cluster resources
to reach one another via a known address while maintaining the security boundaries of the cluster itself. For
example, a database used by a backend application does not need to be visible outside of the cluster, so using a
service of type ClusterIP is appropriate. The backend application would expose an API for interacting with records in
the database, and a frontend application or remote clients would consume that API.

NodePort

A Service of type NodePort exposes the same port on every node of the cluster. The range of available ports is
a cluster-level configuration item, and the Service can either choose one of the ports at random or have one
designated in its configuration. This type of Service automatically creates a ClusterIP Service as its target, and the
ClusterIP Service routes traffic to the Pods.

Diving Deep into Kubernetes Networking19 suse.com

External load balancers frequently use NodePort services. They receive traffic for a specific site or address and
forward it to the cluster on that specific port.

LoadBalancer

When working with a cloud provider for whom support exists within Kubernetes, a Service of type LoadBalancer
creates a load balancer in that provider’s infrastructure. The exact details of how this happens differ between
providers, but all create the load balancer asynchronously and configure it to proxy the request to the corresponding
Pods via NodePort and ClusterIP Services that it also creates.

In a later section, we explore Ingress Controllers and how to use them to deliver a load balancing solution for a
cluster.

DNS
As we stated above, Pods are ephemeral, and because of this, their IP addresses are not reliable endpoints for
communication. Although Services solve this by providing a stable address in front of a group of Pods, consumers
of the Service still want to avoid using an IP address. Kubernetes solves this by using DNS for service discovery.

The default internal domain name for a cluster is cluster.local. When you create a Service, it assembles a
subdomain of namespace.svc.cluster.local (where namespace is the namespace in which the service is
running) and sets its name as the hostname. For example, if the service was named nginx and ran in the default
namespace, consumers of the service would be able to reach it as nginx.default.svc.cluster.local. If the
service’s IP changes, the hostname remains the same. There is no interruption of service.

The default DNS provider for Kubernetes is KubeDNS, but it’s a pluggable component. Beginning with Kubernetes 1.11
CoreDNS is available as an alternative. In addition to providing the same basic DNS functionality within the cluster,
CoreDNS supports a wide range of plugins to activate additional functionality.

Service Mesh
Modern applications are typically composed of distributed collections of microservices, each of which performs a
discrete business function. As a network of microservices changes and grows, the interactions between them can
become increasingly difficult to manage and understand. In such situations, it is useful to have a service mesh as a
dedicated infrastructure layer to control service-to-service communication over a network.

A service mesh controls the delivery of service requests in an application so that separate parts of an application
can communicate with each other. Service meshes can make service-to-service communication fast, reliable and
secure.

Core features provided by a service mesh typically include:

	— Traffic Management such as ingress and egress routing, circuit breaking, and mirroring.

	— Security with resources to authenticate and authorize traffic and users, including mTLS.

	— Observability of logs, metrics, and distributed traffic flows.

Diving Deep into Kubernetes Networking20 suse.com

In addition, service meshes may offer service discovery, load balancing, metrics, and failure recovery, and even more
complex operational requirements such as A/B testing, canary deployments, rate limiting, encryption, and end-to-end
authentication.

Istio Service Mesh

Istio is an open-source tool that makes it easier for DevOps teams to observe, secure, control, and troubleshoot the
traffic within a complex network of microservices. Its features offer a uniform and efficient way to secure, connect, and
monitor services. Users can gain load balancing, service-to-service authentication, and monitoring, generally with few or
no service code changes. Its control plane brings features that include:

	— Secure service-to-service communication in a cluster with TLS encryption, identity-based authentication and
authorization

	— Automatic load balancing for HTTP, gRPC, WebSocket, and TCP traffic

	— Granular control of traffic behavior with routing rules, retries, failovers, and fault injection

	— A pluggable policy layer and configuration API supporting access controls, rate limits and quotas

	— Automatic metrics, logs, and traces for all traffic within a cluster, including cluster ingress and egress

Functionally, Istio has two components: the data plane and the control plane. The data plane provides communication
between services. Istio uses a proxy to intercept all your network traffic, allowing a broad set of application-aware
features based on configuration you set. An Envoy proxy is deployed along with each service that you start in your
cluster, or runs alongside services running on VMs. This enables Istio to understand the traffic being sent and make
decisions based on what type of traffic it is, and which services are communicating. The Istio control plane takes your
desired configuration, and its view of the services, and dynamically programs the proxy servers, updating them as the
rules or the environment changes.

Network Policy
In an enterprise deployment of Kubernetes the cluster often supports multiple projects with different goals. Each of
these projects has different workloads, and each of these might require a different security policy.

Pods, by default, do not filter incoming traffic. There are no firewall rules for inter-Pod communication. Instead, this
responsibility falls to the NetworkPolicy resource, which uses a specification to define the network rules applied to a
set of Pods.

The image below shows a standard three-tier application with a UI, a backend service, and a database, all deployed
within a Kubernetes cluster.

The network policies are defined in Kubernetes, but the CNI plugins that support network policy
implementation do the actual configuration and processing. In a later section, we look at CNI
plugins and how they work.

https://istio.io/

Diving Deep into Kubernetes Networking21 suse.com

Requests to the application arrive at the web Pods, which then initiate a request to the backend Pods for data.
The backend Pods process the request and perform CRUD operations against the database Pods.

If the cluster is not using a network policy, any Pod can talk to any other Pod. Nothing prevents the web Pods
from communicating directly with the database Pods. If the security requirements of the cluster dictate a
need for clear separation between tiers, a network policy enforces it.

The policy defined below states that the database Pods can only receive traffic from the Pods with the labels
app=myapp and role=backend. It also defines that the backend Pods can only receive traffic from Pods with
the labels app=myapp and role=web.

web pod

backend pod

backend pod

backend pod

web pod

db pod

db pod

Diving Deep into Kubernetes Networking22 suse.com

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: backend-access-ingress
spec:
 podSelector:
 matchLabels:
 app: myapp
 role: backend
 ingress:
 - from:
 - podSelector:
 matchLabels:
 app: myapp
 role: web

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: db-access-ingress
spec:
 podSelector:
 matchLabels:
 app: myapp
 role: db
 ingress:
 - from:
 - podSelector:
 matchLabels:
 app: myapp
 role: backend

With this network policy in place, Kubernetes blocks communication between the web and database tiers.

Diving Deep into Kubernetes Networking23 suse.com

How a Network Policy Works
In addition to the fields used by all Kubernetes manifests, the specification of the NetworkPolicy resource requires
some extra fields.

podSelector

This field tells Kubernetes how to find the Pods to which this policy applies. Multiple network policies can select the
same set of Pods, and the ingress rules are applied sequentially. The field is not optional, but if the manifest defines
a key with no value, it applies to all Pods in the namespace.

policyTypes

This field defines the direction of network traffic to which the rules apply. If missing, Kubernetes interprets the rules
and only applies them to ingress traffic unless egress rules also appear in the rules list. This default interpretation
simplifies the manifest’s definition by having it adapt to the rules defined later.

Because Kubernetes always defines an ingress policy if this field is unset, a network policy for egress-only rules must
explicitly define the policyType of Egress.

egress

Rules defined under this field apply to egress traffic from the selected
Pods to destinations defined in the rule. Destinations can be an IP block
(ipBlock), one or more Pods (podSelector), one or more namespaces
(namespaceSelector), or a combination of both podSelector and
nameSpaceSelector.

The following rule permits traffic from the Pods to any address in
10.0.0.0/24 and only on TCP port 5978:

 egress:
 - to:
 - ipBlock:
 cidr: 10.0.0.0/24
 ports:
 - protocol: TCP
 port: 5978

web pod

backend pod

backend pod

backend pod

web pod

db pod

db pod

Diving Deep into Kubernetes Networking24 suse.com

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: db-egress-denyall
spec:
 podSelector:
 matchLabels:
 app: myapp
 role: backend
 policyTypes:
 - Egress
 egress:
 - ports:
 - port: 53
 protocol: UDP
 - port: 53
 protocol: TCP

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: db-egress-denyall
spec:
 podSelector:
 matchLabels:
 app: myapp
 role: backend
 policyTypes:
 - Egress
 egress:
 - ports:
 - port: 53
 protocol: UDP
 - port: 53
 protocol: TCP
 - to:
 - ipBlock:
 cidr: 10.0.0.0/24
 ports:
 - protocol: TCP
 port: 3306

The next rule permits outbound traffic for Pods with the labels app=myapp and role=backend to any host on TCP or
UDP port 53:

Egress rules work best to limit a resource’s communication to the other resources on which it relies. If those resources
are in a specific block of IP addresses, use the ipBlock selector to target them, specifying the appropriate ports:

Diving Deep into Kubernetes Networking25 suse.com

Consider, however, that this allows traffic to any port on those Pods. Even if no other ports are listening, the principle
of least privilege states that we only want to expose what we need to expose for the services to work. The following
modifications to the NetworkPolicy take this rule into account by only allowing inbound traffic to the ports where our
Service is running.

ingress:
- from:
 - ipBlock:
 cidr: 172.17.0.0/16
 except:
 - 172.17.1.0/24
 - namespaceSelector:
 matchLabels:
 project: myproject
 - podSelector:
 matchLabels:
 role: frontend
ports:
 - protocol: TCP
 port: 6379

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: web-allow-all-access
spec:
 podSelector:
 matchLabels:
 app: myapp
 role: web
 ingress:
 - from: []

The next policy permits access to the Pods labeled app=myapp and role=web from all sources, external or internal.

Ingress

Rules listed in this field apply to traffic that is inbound to the selected Pods. If the field is empty, all inbound traffic
will be blocked. The example below permits inbound access from any address in 172.17.0.0/16 unless it’s within
172.17.1.0/24. It also permits traffic from any Pod in the namespace myproject.

(Note the subtle distinction in how the rules are listed. Because namespaceSelector is a separate item in the list,
it matches with an or value. Had namespaceSelector been listed as an additional key in the first list item, it would
permit traffic that came from the specified ipBlock and was also from the namespace myproject.)

Diving Deep into Kubernetes Networking26 suse.com

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: web-allow-internal-port80
spec:
 podSelector:
 matchLabels:
 app: “myapp”
 role: “web”
 ingress:
 - ports:
 - port: 8080
 from:
 - podSelector:
 matchLabels:
 app: “mytestapp”
 role: “web-test-client”

Even if a Service listens on a different port than where the Pod’s containers listen, use the container ports in
the network policy. Ingress rules affect inter-Pod communication, and the policy does not know about the
abstraction of the service.

Apart from opening incoming traffic on certain ports, you can also enable all traffic from a set of Pods inside the
cluster. This enables a few trusted applications to reach out from the application on all ports and is especially useful
when workloads in a cluster communicate with each other over many random ports. The opening of traffic from
certain Pods is achieved by using labels as described in the policy below.

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: web-allow-all-access-specific-port
spec:
 podSelector:
 matchLabels:
 app: myapp
 role: web
 ingress:
 - ports:
 - port: 8080
 from: []

Diving Deep into Kubernetes Networking27 suse.com

Container Networking Interface
The Container Networking Interface (CNI) project is also under the governance of the CNCF. It provides a
specification and a series of libraries for writing plugins to configure network interfaces in Linux containers.

The specification requires that providers implement their plugin as a binary executable that the container engine
invokes. Kubernetes does this via the Kubelet process running on each node of the cluster.

The CNI specification expects the container runtime to create a new network namespace before invoking the CNI
plugin. The plugin is then responsible for connecting the container’s network with that of the host. It does this by
creating the virtual Ethernet devices that we discussed earlier.

Kubernetes and CNI

Kubernetes natively supports the CNI model. It gives its users the freedom to choose the network provider or product
best suited for their needs.

To use the CNI plugin, pass --network-plugin=cni to the Kubelet when launching it. If your environment is not using
the default configuration directory (/etc/cni/net.d), pass the correct configuration directory as a value to --cni-
conf-dir. The Kubelet looks for the CNI plugin binary at /opt/cni/bin, but you can specify an alternative location
with --cni-bin-dir.

The CNI plugin provides IP address management for the Pods and builds routes for the virtual interfaces. To do
this, the plugin interfaces with an IPAM plugin that is also part of the CNI specification. The IPAM plugin must also
be a single executable that the CNI plugin consumes. The role of the IPAM plugin is to provide to the CNI plugin the
gateway, IP subnet, and routes for the Pod.

Diving Deep into Kubernetes Networking28 suse.com

Networking with Flannel
Flannel is one of the most straightforward network providers for
Kubernetes. It operates at Layer 3 and offloads the actual packet
forwarding to a backend such as VxLAN or IPSec. It assigns a large
network to all hosts in the cluster and then assigns a portion of
that network to each host. Routing between containers on a host
happens via the usual channels, and Flannel handles routing
between hosts using one of its available options.

Flannel uses etcd to store the map of what network is assigned to which host. The target can be an external
deployment of etcd or the one that Kubernetes itself uses.

Flannel does not provide an implementation of the NetworkPolicy resource.

Running Flannel with Kubernetes
Flannel Pods roll out as a DaemonSet, with one Pod assigned to each host. To deploy it within Kubernetes, use the
kube-flannel.yaml manifest from the Flannel repository on Github.

Once Flannel is running, it is not possible to change the network address space or the backend communication format
without cluster downtime.

Network Type Backend Key features

Overlay VxLAN
	— Fast, but with no interhost encryption
	— Suitable for private/secure networks

Overlay IPSec
	— Encrypts traffic between hosts
	— Suitable when traffic traverses the Internet

Non Overlay Host-gw
	— Good performance
	— Cloud agnostic

Non Overlay AWS VPC
	— Good performance
	— Limited to Amazon’s cloud

Diving Deep into Kubernetes Networking29 suse.com

Flannel Backends
VxLAN

VxLAN is the simplest of the officially supported backends for Flannel. Encapsulation happens within the kernel, so
there is no additional overhead caused by moving data between the kernel and user space.

The VxLAN backend creates a Flannel interface on every host. When a container on one node wishes to send traffic to
a different node, the packet goes from the container to the bridge interface in the host’s network namespace. From
there the bridge forwards it to the Flannel interface because the kernel route table designates that this interface
is the target for the non-local portion of the overlay network. The Flannel network driver wraps the packet in a UDP
packet and sends it to the target host.

Once it arrives at its destination, the process flows in reverse, with the Flannel driver on the destination host
unwrapping the packet, sending it to the bridge interface, and from there the packet finds its way into the overlay
network and to the destination Pod.

172.17.0.254/16

172.17.0.2/16

docker0
172.17.0.1/16

IP table rules

cbr0
10.42.1.1/32

flannel.1
10.42.1.0/32

10.42.1.254/24

10.42.1.2/24

eth0
10.129.1.101/24

Node 1

172.17.0.254/16

172.17.0.2/16

docker0
172.17.0.1/16

IP table rules

cbr0
10.42.2.1/32

flannel.1
10.42.2.0/32

10.42.2.254/24

10.42.2.2/24

eth0
10.129.1.102/24

Node 2

172.17.0.254/16

172.17.0.2/16

docker0
172.17.0.1/16

IP table rules

cbr0
10.42.3.1/32

flannel.1
10.42.3.0/32

10.42.1.254/24

10.42.1.2/24

eth0
10.129.1.103/24

Node 3

Diving Deep into Kubernetes Networking30 suse.com

Host-gw

The Host-gw backend provides better performance than VxLAN but requires Layer 2 connectivity between hosts. It
operates by creating IP routes to subnets via remote machine addresses.

Unlike VxLAN, no Flannel interface is created when using this backend. Instead, each node sends traffic directly to the
destination node where the remote network is located.

This backend may require additional network configuration if used in a cloud provider where inter-host communication
uses virtual switches.

UDP

The UDP backend is insecure and should only be used for debugging or if the kernel does not support VxLAN.

172.17.0.254/16

172.17.0.2/16

docker0
172.17.0.1/16

IP table rules

cbr0
10.42.1.1/32

10.42.1.254/24

10.42.1.2/24

eth0
10.129.1.101/24

Node 1

172.17.0.254/16

172.17.0.2/16

docker0
172.17.0.1/16

IP table rules

cbr0
10.42.2.1/32

10.42.2.254/24

10.42.2.2/24

eth0
10.129.1.102/24

Node 2

172.17.0.254/16

172.17.0.2/16

docker0
172.17.0.1/16

IP table rules

cbr0
10.42.3.1/32

10.42.1.254/24

10.42.1.2/24

eth0
10.129.1.103/24

Node 3

Diving Deep into Kubernetes Networking31 suse.com

Networking with Calico
Architecture
Calico operates at Layer 3 and assigns every workload a routable IP address. It prefers to operate by using BGP
without an overlay network for the highest speed and efficiency, but in scenarios where hosts cannot directly
communicate with one another, it can utilize an overlay solution such as VxLAN or IP-in-IP.

Calico supports network policies for protecting workloads and nodes from malicious activity or
aberrant applications.

The Calico networking Pod contains a CNI container, a container that runs an agent that tracks Pod deployments
and registers addresses and routes, and a daemon that announces the IP and route information to the network
via the Border Gateway Protocol (BGP). The BGP daemons build a map of the network that enables cross-host
communication.

Calico requires a distributed and fault-tolerant key/value datastore, and deployments often choose etcd to deliver
this component. Calico uses it to store metadata about routes, virtual interfaces, and network policy objects. The
Felix agent in the calico-node Pod communicates with etcd to publish this information. Calico can use a dedicated
HA deployment of etcd, or it can use the Kubernetes etcd datastore via the Kubernetes API. Please see the Calico
deployment documentation to understand the functional restrictions that are present when using the Kubernetes
API for storing Calico data.

The final piece of a Calico deployment is the controller. Although presented as a single object, it is a set of controllers
that run as a control loop within Kubernetes to manage policy, workload endpoints, and node changes.

	— The Policy Controller watches for changes in the defined network policies and translates them into Calico
network policies.

	— The Namespace Controller watches namespaces and programs Calico profiles.

	— The Serviceaccount Controller watches service accounts and programs Calico profiles.

	— Calico stores Pod information as workload endpoints. The Workload Endpoint Controller watches for updates to
labels on the Pod and updates the workload endpoints.

	— The Node Controller loop watches for the addition or removal of Kubernetes nodes and updates the kvdb with
the corresponding data.

Users can manage Calico objects within the Kubernetes cluster via the command-line tool calicoctl. The tool’s
only requirement is that it can reach the Calico datastore.

Install Calico with Kubernetes
The latest instructions for installing Calico are present on the Calico Project website at https://docs.projectcalico.org. For
this section, you need a Kubernetes cluster running the Calico network backend.

When the cluster is ready, deploy a Pod running Nginx:

https://projectcalico.docs.tigera.io/about/about-calico

Diving Deep into Kubernetes Networking32 suse.com

Note the IP address and the eth0 interface within the Pod:

In the output below, note that the routing table indicates that a local interface (cali106d129118f) handles traffic for
the IP address of the Pod. The calico-node Pod creates this interface and propagates the routes to other nodes in
the cluster.

Kubernetes scheduled our Pod to run on k8s-n-1. If we look at the route table on the other two nodes, we see that
each directs 192.168.2.0/24 to 70.0.80.117, which is the address of k8s-n-1.

Diving Deep into Kubernetes Networking33 suse.com

Using BGP for Route Announcements
Full Mesh Topology

Each node where Calico runs behaves as a virtual router. The calico-node Pod runs the Felix agent and the BIRD
BGP daemon. BIRD is responsible for announcing the routes served by the host where it runs. Calico defaults to
creating a full node-to-node mesh topology where each node builds a peering session with every other node in the
cluster. At a small scale this works well, but as the cluster grows, we need to deploy a more efficient method for route
propagation.

Using a BGP Route Reflector

We can achieve considerable improvements by utilizing a route reflector in our topology. This peer acts as a hub,
and all other nodes build peering relationships with it. When a node announces a route to the reflector, it propagates
this route to all other nodes with which it peers. It is not unusual to have two or more reflectors for fault tolerance or
scale. Nodes connect to one or more of them to distribute the load of maintaining and announcing routes evenly
across the cluster.

Diving Deep into Kubernetes Networking34 suse.com

Two configurations of route reflectors: a single route reflector (top) and multiple route reflectors configured within a
Kubernetes cluster (bottom).

Before we can use a route reflector, we first have to disable the default node-to-node BGP peering in the Calico
configuration. We do this by setting nodeToNodeMeshEnabled to false in the BGPConfiguration resource, as
demonstrated below:

apiVersion: projectcalico.org/v3
 kind: BGPConfiguration
 metadata:
 name: default
 spec:
 logSeverityScreen: Info
 nodeToNodeMeshEnabled: false
 asNumber: 63400

calico/node pod

Node

calico/node pod

Node

calico/node pod

Node

calico/node pod

Node

calico/node pod

Node

calico/node pod

Node

calico/node pod

Node

calico/node pod

Node

Route reflector

Route reflector Route reflector

Diving Deep into Kubernetes Networking35 suse.com

Next, use calicoctl to show the autonomous system number (ASN) for each node in the Kubernetes cluster.

Per Node BGP Peering

To create a network topology where only a subset of nodes peers with certain external devices, we create a per-
node BGPPeer resource within the cluster.

As before, use the ASN for the Calico network and the IP of the BGP peer. Specify the node to which this configuration
applies.

The calico-node Pods use one of two methods to build the peering relationship with external peers: global peering
or per-node peering.

Global BGP Peering

If the network has a device that we want to have all of the nodes peer with, we can create a global BGPPeer resource
within the cluster. Doing it this way assures that we only have to create the configuration once for it to be applied
correctly everywhere.

Use the ASN retrieved above and the IP of the external peer.

To remove a global BGP peer, use the calicoctl command:

You can view the current list of BGP Peers with the following:

calicoctl get nodes --output=wide

$ cat << EOF | calicoctl create -f -
apiVersion: projectcalico.org/v3
kind: BGPPeer
metadata:
 name: bgppeer-2
 peerIP: <IP>
 Node: <NODENAME>
spec:
 asNumber: <ASN>
EOF

$ calicoctl delete bgpPeer <IP> --scope=global

$ calicoctl get bgpPeer --scope=global

$ calicoctl create -f - << EOF
apiVersion: projectcalico.org/v3
kind: BGPPeer
metadata:
 name: bgppeer-global
 peerIP: <IP>
 scope: global
spec:
 asNumber: <ASN>
EOF

Diving Deep into Kubernetes Networking36 suse.com

After activating IP-in-IP, Calico wraps inter-Pod packets in a new packet with headers that indicate the source of the
packet is the host with the originating Pod, and the target of the packet is the host with the destination Pod. The Linux
kernel performs this encapsulation and then forwards the packet to the destination host where it is unwrapped and
delivered to the destination Pod.

IP-in-IP has two modes of operation:

1.	� Always: This is the default mode if an IPPool resource is defined.

2.	� CrossSubnet: This only performs IP encapsulation for traffic which crosses subnet boundaries. Doing this
provides a performance benefit on networks where cluster members within separate Layer 2 boundaries have
routers between them because it performs encapsulation intelligently, only using it for the cross-subnet traffic.

For the CrossSubnet mode to work, each Calico node must use the IP address and subnet mask for the host. For
more information on this, see the Calico documentation for IP-in-IP.

apiVersion: projectcalico.org/v3
kind: IPPool
metadata:
 name: project1IPPool
spec:
 cidr: 10.11.12.0/16
 ipipMode: CrossSubnet
 natOutgoing: true

Using IP-in-IP
If we’re unable to use BGP, perhaps because we’re using a cloud provider or another environment where we have
limited control over the network or no permission to peer with other routers, Calico’s IP-in-IP mode encapsulates
packets before sending them to other nodes.

To enable this mode, define the ipipMode field on the IPPool resource:

You can remove a per-node BGP peer or view the current per-node configuration with calicoctl:

$ calicoctl delete bgpPeer <IP> --scope=node --node=<NODENAME>

$ calicoctl get bgpPeer --node=<NODENAME>

Diving Deep into Kubernetes Networking37 suse.com

Networking with Multus CNI
Architecture
Multus CNI is a container network interface (CNI) plugin for Kubernetes that enables users to attach multiple network
interfaces to pods. A typical Kubernetes pod has only one network interface, apart from a loopback. Multus can
create a multi-homed pod with multiple interfaces. To accomplish this, Multus acts as a “meta-plugin”, a CNI plugin
that can call multiple other CNI plugins.

Multus supports the multi-networking feature in Kubernetes using Custom Resources Definition (CRD)-based
network objects to extend the Kubernetes application programming interface (API). This function is important
because multiple interfaces are employed by network functions to separate control, management and data/user
network planes. Interfaces are also used to support different protocols, software stacks, tuning, and configuration
requirements. Multus enables pods not only have multiple network interface connections, but also use advanced
networking functions—including port mirroring and bandwidth capping—attached to those interfaces.

The illustration below shows network interfaces attached to a pod with three interfaces, as provisioned by Multus
CNI: eth0, net0 and net1. eth0 connects Kubernetes cluster network to connect with Kubernetes server/services (e.g.
Kubernetes api-server, kubelet and so on). net0 and net1 are additional network attachments and connect to other
networks by using other CNI plugins (e.g. vlan/vxlan/ptp).

A pod with three interfaces, as provisioned by Multus CNI.

Pod

NW1

NW2

Network Attachments

cluster network/
master plugin

Kubernetes servers
(api-server, kubelet son on)

other networks

Specific User Traffic (Liveness and Readiness) Probes
Communication between API and Pod

net0

net1 eth0

Diving Deep into Kubernetes Networking38 suse.com

Install Multus with Kubernetes
The latest instructions for installing Multus CNI are present on the project website at https://github.com/
k8snetworkplumbingwg/multus-cni. Existing users of Multus who need more detail can refer to the comprehensive
usage guide.

For a quickstart with Multus, you need to have configured a default network—that is, a CNI plugin that’s used for your
pod-to-pod connectivity—and a Kubernetes CNI plugin to serve as your pod-to-pod network. The recommended
method is to deploy Multus using a Daemonset that spins up pods which install a Multus binary and configure Multus
for usage.

First, clone the GitHub repository:

git clone https://github.com/k8snetworkplumbingwg/multus-cni.git && cd multus-cni

$ cat ./deployments/multus-daemonset-thick-plugin.yml | kubectl apply -f –

$ kubectl get pods --all-namespaces | grep -i multus

Then, apply a YAML file with kubectl from this repo:

The Multus daemonset:

	— Starts a Multus daemonset that places a Multus binary on each node in /opt/cni/bin

	— Reads the first alphabetical configuration file in /etc/cni/net.d, and auto-generates a new configuration file
for Multus as /etc/cni/net.d/00-multus.conf

	— Creates a /etc/cni/net.d/multus.d directory on each node with authentication information for Multus to
access the Kubernetes API.

Validate your installation

Ensure that the Multus pods ran without error. You can gain an overview by looking at:

It’s possible to further validate by looking at the /etc/cni/net.d/ directory and ensuring that the auto-generated /
etc/cni/net.d/00-multus.conf corresponds to the first configuration file.

https://github.com/k8snetworkplumbingwg/multus-cni
https://github.com/k8snetworkplumbingwg/multus-cni
https://github.com/k8snetworkplumbingwg/multus-cni/blob/master/docs/how-to-use.md
https://github.com/k8snetworkplumbingwg/multus-cni/blob/master/docs/how-to-use.md

Diving Deep into Kubernetes Networking39 suse.com

{
 “cniVersion”: “0.3.0”,
 “type”: “loopback”,
 “additional”: “information”
}

Create additional interfaces

You can create configurations for each of the additional interfaces that attach to pods by creating Custom
Resources. Part of the quickstart installation creates a custom resource definition (CRD) to store configurations for
each interface.

CNI Configurations

CNI configurations are JSON, with a structure that has several key features:

1.	� cniVersion: Defines the version used for each CNI plugin.

2.	� type: Commands CNI which binary to call on disk. Typically, these binaries are stored in /opt/cni/bin on each
node, and CNI executes this binary. This example specifies the loopback binary (which create a loopback-type
network interface). If this is your first time installing Multus, verify that the plugins that are in the “type” field are
actually on disk in the
/opt/cni/bin directory.

3.	� additional: This field is an example. Each CNI plugin can specify a JSON configuration parameter, specific to the
binary being called in the type field.

Consider the example CNI configuration:

It is not necessary to reload or refresh the Kubelets when CNI configurations change because they are read on each
creation / deletion of pods. When a configuration changes, it will apply the next time a pod is created. It may be
necessary to restart existing pods that need the new configuration.

Store a Configuration as a Custom Resource

To create an additional interface, consider the creation of a macvlan interface for pods to use. Start by creating
a custom resource that defines the CNI configuration for interfaces. Note in the following command that there’s a
kind: NetworkAttachmentDefinition. This is the name of the configuration—a custom extension of Kubernetes that
defines how to attach networks to pods. The config field is a CNI configuration as explained earlier.

Give the configuration a name using the name field under metadata —this is also how to tell pods to use this
configuration. The name in this example is macvlan-conf—because the demonstration creates a configuration for
macvlan.

Use the following command to create this example configuration:

Diving Deep into Kubernetes Networking40 suse.com

cat <<EOF | kubectl create -f -
apiVersion: “k8s.cni.cncf.io/v1”
kind: NetworkAttachmentDefinition
metadata:
 name: macvlan-conf
spec:
 config: ‘{
 “cniVersion”: “0.3.0”,
 “type”: “macvlan”,
 “master”: “eth0”,
 “mode”: “bridge”,
 “ipam”: {
 “type”: “host-local”,
 “subnet”: “192.168.1.0/24”,
 “rangeStart”: “192.168.1.200”,
 “rangeEnd”: “192.168.1.216”,
 “routes”: [
 { “dst”: “0.0.0.0/0” }
],
 “gateway”: “192.168.1.1”
 }
 }’
EOF

kubectl get network-attachment-definitions

kubectl describe network-attachment-definitions macvlan-conf

This example uses eth0 as the master parameter. The master parameter should match the interface name on the
host’s cluster. Use kubectl to see the new configurations via:

Or, get more detail by describing them:

Create a Pod that Attaches an Additional Interface

Creating a pod will look familiar to any user who has created a pod previously but it will have a special annotations
field. In this instance, you can add an annotation called k8s.v1.cni.cncf.io/networks. This field takes a comma
delimited list of the names of your NetworkAttachmentDefinitions created above. The command below has the
annotation of k8s.v1.cni.cncf.io/networks: macvlan-conf where macvlan-conf is the name used previously to
create the configuration. As an example of a pod that sleeps for a long time, enter the command:

Diving Deep into Kubernetes Networking41 suse.com

The following command reveals the interfaces are attached to the pod:

Note the 3 interfaces:

	— lo a loopback interface

	— eth0 our default network

	— net1 the new interface we created with the macvlan configuration.

Network Status Annotations

For additional confirmation, use kubectl describe pod samplepod to review the annotations section, which
should display information such as:

$ kubectl exec -it samplepod -- ip a

cat <<EOF | kubectl create -f -
apiVersion: v1
kind: Pod
metadata:
 name: samplepod
 annotations:
 k8s.v1.cni.cncf.io/networks: macvlan-conf
spec:
 containers:
 - name: samplepod
 command: [“/bin/ash”, “-c”, “trap : TERM INT; sleep infinity & wait”]
 image: alpine
EOF

Annotations:	 k8s.v1.cni.cncf.io/networks: macvlan-conf
	 k8s.v1.cni.cncf.io/network-status:

	 [{
		 “name”: “cbr0”,
		 “ips”: [
		 “10.244.1.73”
],
		 “default”: true,
		 “dns”: {}
	 },{
		 “name”: “macvlan-conf”,
		 “interface”: “net1”,
		 “ips”: [
		 “192.168.1.205”
],
		 “mac”: “86:1d:96:ff:55:0d”,
		 “dns”: {}
}]

Diving Deep into Kubernetes Networking42 suse.com

This metadata indicates that there are two CNI plugins running successfully.

It is possible to add more interfaces to a pod by creating more custom resources, then referring to them in pod’s
annotation. It is also feasible to reuse configurations. To attach two macvlan interfaces to a pod, create a pod like so:

The annotation now reads k8s.v1.cni.cncf.io/networks: macvlan-conf,macvlan-conf. The same configuration
is used twice, separated by a comma. In the event another custom resource is created with the name foo, the
annotation would read k8s.v1.cni.cncf.io/networks: foo,macvlan-conf, expandable to any number of
attachments.

Additional Installation Options

As an alternative to installing via daemonset using the quick-start guide, users can opt to:

	— Download binaries from release page

	— Install by Docker image from Docker Hub

	— Roll-your-own and build from source (see Development)

cat <<EOF | kubectl create -f -apiVersion: v1kind: Podmetadata: name: samplepod
annotations: k8s.v1.cni.cncf.io/networks: macvlan-conf,macvlan-confspec: containers:
- name: samplepod command: [“/bin/ash”, “-c”, “trap : TERM INT; sleep infinity & wait”]
image: alpineEOF

https://github.com/k8snetworkplumbingwg/multus-cni/releases
https://hub.docker.com/r/nfvpe/multus/tags/
https://github.com/k8snetworkplumbingwg/multus-cni/blob/master/docs/development.md

Diving Deep into Kubernetes Networking43 suse.com

Networking with Cilium
Architecture
Cilium is designed to secure network connectivity transparently between application services deployed using Linux
container management platforms such as Docker and Kubernetes. At the foundation of Cilium is the Linux kernel
technology eBPF.

eBPF can run sandboxed programs in an operating system kernel, enabling users to safely and efficiently extend
the capabilities of the kernel without changing kernel source code, loading kernel modules, or changing container
configuration. This enables dynamic insertion of powerful security visibility and control logic within Linux.

By leveraging Linux eBPF, Cilium can insert security visibility and enforcement based on service / pod / container
identity, in contrast to IP address identification in traditional systems. It can also filter on application-layer (e.g.
HTTP). As a result, Cilium decouples security from addressing, and provides stronger security isolation by operating
at the HTTP-layer in addition to providing traditional Layer 3 and Layer 4 segmentation.

Cilium offers multiple functions for security and networking:

1.	 Protecting and securing APIs transparently

Cilium offers the ability to secure modern application protocols such as REST/HTTP, gRPC and Kafka. Traditional
firewalls operate at Layer 3 and 4—a protocol running on a particular port is either completely trusted or blocked
entirely. Cilium provides the ability to filter on individual application protocol requests such as:

	— Allow all HTTP requests with method GET and path /public/.*. Deny all other requests.

	— Allow service1 to produce on Kafka topic topic1 and service2 to consume on topic1. Reject all other Kafka
messages.

	— Require the HTTP header X-Token: [0-9]+ to be present in all REST calls.

2.	� Securing service-to-service communication based on identities

Cilium assigns a security identity to groups of application containers that share security policies. The identity is
then associated with all network packets emitted by the application containers, allowing identity validation at the
receiving node. Security identity management is performed using a key-value store.

3.	 Securing access to and from external services

Label-based security is the tool of choice for cluster internal access control. To secure access to and from external
services, Cilium supports traditional CIDR-based security policies for both ingress and egress.

4.	 Simple Networking

Cilium offers a simple, flat Layer 3 network with the ability to span multiple clusters connecting all application
containers. IP allocation uses host scope allocators, so that each host can allocate IPs without any coordination
between hosts. Cilium supports the following multi node networking models:

	— Overlay: Cilium offers encapsulation-based virtual network spanning all hosts. VXLAN and Geneve are baked
in but users can enable all encapsulation formats supported by Linux. This mode has minimal infrastructure

https://ebpf.io/

Diving Deep into Kubernetes Networking44 suse.com

and integration requirements: it works on almost any network infrastructure because the only requirement is IP
connectivity between hosts.

	— Native Routing: Cilium enables use of the regular routing table of the Linux host. The network must be capable to
route the IP addresses of the application containers. This mode is for advanced users and requires awareness of
the underlying networking infrastructure. It works especially well with:

	— 	Native IPv6 networks

	— In conjunction with cloud network routers

	— If you are already running routing daemons

5.	 Load Balancing

Cilium implements distributed load balancing for traffic between application containers and to external services.
It can fully replace components such as kube-proxy. The load balancing is implemented in eBPF using efficient
hashtables, which enables almost unlimited scale.

For north-south type load balancing, Cilium’s eBPF implementation is optimized for maximum performance. It can
be attached to XDP (eXpress Data Path) and it supports direct server return (DSR), as well as Maglev consistent
hashing. For east-west type load balancing, Cilium performs efficient service-to-backend translation in the Linux
kernel’s socket layer (e.g. at TCP connect time) to avoid per-packet NAT operations overhead in lower layers.

6.	 Bandwidth Management

Cilium implements bandwidth management through efficient EDT-based (Earliest Departure Time) rate-limiting
with eBPF for container traffic as it leaves a node. Compared to traditional approaches such as HTB (Hierarchy
Token Bucket) or TBF (Token Bucket Filter) as used in the bandwidth CNI plugin, Cilium can reduce transmission tail
latencies for applications and helps avoid locking under multi-queue NICs.

7.	 Monitoring and Troubleshooting

Operating any distributed system requires the ability to gain visibility and to troubleshoot issues. Cilium aims to
outperform tools such as tcpdump and ping with tooling to provide:

	— �Event monitoring with metadata: When a packet is dropped, the tool reports the source and destination IP of the
packet, as well as the full label information of both the sender and receiver.

	— �Policy decision tracing, to help understand why a packet is being dropped or a request rejected.

	— �Metrics export via Prometheus for integration with dashboards.

	— �Hubble, an observability platform written for Cilium, offers service dependency maps, operational monitoring
and alerting, and flow log-based application and security visibility.

Requirements

Most modern Linux distributions meet the minimum requirements for Cilium:

1.	� Running Cilium using the container image cilium/cilium requires the host system to meet these requirements:

	— Linux kernel >= 4.9.17

2.	� Running Cilium as a native process on your host (i.e. not running the cilium/cilium container image) entails
these additional requirements:

	— clang+LLVM >= 10.0

	— iproute2 with eBPF templating patches

Diving Deep into Kubernetes Networking45 suse.com

To this:

Then, install Cilium via the provided quick-install.yaml. (Note that quick-install.yaml is a pre-rendered Cilium
chart template. The template is generated using helm template command with default configuration parameters
without any customization.)

Install Cilium with Kubernetes
Cilium offers a wide range of installation options. In this exercise we will walk through installation of Cilium on
Rancher Kubernetes Engine (RKE). RKE is a CNCF-certified Kubernetes distribution that runs entirely within Docker
containers. It removes most host dependencies and presents a stable path for deployment, upgrades, and rollbacks,
to help reduce common frustrations of installation complexity.

Other options for installation include:

	— Creating a Sandbox environment

	— Self-Managed Kubernetes

	— Managed Kubernetes

	— Installer Integrations

Installation using Rancher Kubernetes Engine

The latest instructions for installing Cilium on RKU are present on the project website at https://docs.cilium.io/en/
v1.9/gettingstarted/k8s-install-rke/.

As a first step, install a cluster based on the RKE Installation Guide. When creating the cluster, make sure to change
the default network plugin in the config.yaml file by changing this:

Network:

 options:

 flannel_backend_type:“vxlan”

 plugin: “canal”

network:

 plugin: none

kubectl apply -f

https://raw.githubusercontent.com/cilium/cilium/v1.9/install/kubernetes/quick-install.yaml

3.	� Running Cilium without Kubernetes entails these additional requirements:

	— Key-Value store etcd >= 3.1.0 or consul >= 0.6.4

For more information about system requirements, visit: https://docs.cilium.io/en/v1.9/operations/system_
requirements/.

https://rancher.com/products/rke
https://docs.cilium.io/en/v1.9/gettingstarted/k8s-install-sandbox/
https://docs.cilium.io/en/v1.9/gettingstarted/k8s-install-self-managed/
https://docs.cilium.io/en/v1.9/gettingstarted/k8s-install-managed/
https://docs.cilium.io/en/v1.9/gettingstarted/k8s-installers/
https://docs.cilium.io/en/v1.9/gettingstarted/k8s-install-rke/
https://docs.cilium.io/en/v1.9/gettingstarted/k8s-install-rke/
https://rancher.com/docs/rke/latest/en/installation/
https://docs.cilium.io/en/v1.9/operations/system_requirements/
https://docs.cilium.io/en/v1.9/operations/system_requirements/

Diving Deep into Kubernetes Networking46 suse.com

Restart Unmanaged Pods

To ensure that all pods which have been running before Cilium was deployed have network connectivity provided by
Cilium and NetworkPolicy applies to them, restart all pods that are not running in host-networking mode:

Validate the Installation

You can monitor as Cilium and all required components are being installed:

It may take a couple of minutes for all components to come up:

Deploy the Connectivity Test

To check connectivity between pods, you can deploy a connectivity check. Create a separate namespace for this, such
as kubectl create ns cilium-test.

Then, deploy the check with:

kubectl get pods --all-namespaces -o custom-columns=NAMESPACE:.metadata.namespace,NAME:.
metadata.name,HOSTNETWORK:.spec.hostNetwork --no-headers=true | grep ‘<none>’ | awk
‘{print “-n “$1” “$2}’ | xargs -L 1 -r kubectl delete pod

pod “event-exporter-v0.2.3-f9c896d75-cbvcz” deleted

pod “fluentd-gcp-scaler-69d79984cb-nfwwk” deleted

pod “heapster-v1.6.0-beta.1-56d5d5d87f-qw8pv” deleted

pod “kube-dns-5f8689dbc9-2nzft” deleted

pod “kube-dns-5f8689dbc9-j7x5f” deleted

pod “kube-dns-autoscaler-76fcd5f658-22r72” deleted

pod “kube-state-metrics-7d9774bbd5-n6m5k” deleted

pod “l7-default-backend-6f8697844f-d2rq2” deleted

pod “metrics-server-v0.3.1-54699c9cc8-7l5w2” deleted

kubectl -n kube-system get pods --watch

NAME READY STATUS RESTARTS AGE

cilium-operator-cb4578bc5-q52qk 0/1 Pending 0 8s

cilium-s8w5m 0/1 PodInitializing 0 7s

coredns-86c58d9df4-4g7dd 0/1 ContainerCreating 0 8m57s

coredns-86c58d9df4-4l6b2 0/1 ContainerCreating 0 8m57s

cilium-operator-cb4578bc5-q52qk 1/1 Running 0 4m13s

cilium-s8w5m 1/1 Running 0 4m12s

coredns-86c58d9df4-4g7dd 1/1 Running 0 13m

coredns-86c58d9df4-4l6b2 1/1 Running 0 13m

Diving Deep into Kubernetes Networking47 suse.com

kubectl apply -n cilium-test -f https://raw.githubusercontent.com/cilium/cilium/v1.9/
examples/kubernetes/connectivity-check/connectivity-check.yaml

kubectl apply -f

https://raw.githubusercontent.com/cilium/cilium/v1.9/install/kubernetes/quick-hubble-
install.yaml

kubectl get pods -n cilium-test

NAME READY STATUS RESTARTS AGE

echo-a-76c5d9bd76-q8d99 1/1 Running 0 66s

echo-b-795c4b4f76-9wrrx 1/1 Running 0 66s

echo-b-host-6b7fc94b7c-xtsff 1/1 Running 0 66s

host-to-b-multi-node-clusterip-85476cd779-bpg4b 1/1 Running 0 66s

host-to-b-multi-node-headless-dc6c44cb5-8jdz8 1/1 Running 0 65s

pod-to-a-79546bc469-rl2qq 1/1 Running 0 66s

pod-to-a-allowed-cnp-58b7f7fb8f-lkq7p 1/1 Running 0 66s

pod-to-a-denied-cnp-6967cb6f7f-7h9fn 1/1 Running 0 66s

pod-to-b-intra-node-nodeport-9b487cf89-6ptrt 1/1 Running 0 65s

pod-to-b-multi-node-clusterip-7db5dfdcf7-jkjpw 1/1 Running 0 66s

pod-to-b-multi-node-headless-7d44b85d69-mtscc 1/1 Running 0 66s

pod-to-b-multi-node-nodeport-7ffc76db7c-rrw82 1/1 Running 0 65s

pod-to-external-1111-d56f47579-d79dz 1/1 Running 0 66s

pod-to-external-fqdn-allow-google-cnp-78986f4bcf-btjn7 1/1 Running 0 66s

This test implements a series of deployments using various connectivity paths to connect. Connectivity paths include
with / without service load-balancing, as well as and various network policy combinations. The pod name indicates the
connectivity variant and the readiness; the liveness gate indicates success or failure of the test:

Enable Hubble for Cluster-Wide Visibility

Use Hubble, the component for observability in Cilium, to gain cluster-wide visibility into your network traffic. The
example below shows the process for quick-hubble-install.yaml. Installation via Helm is also possible. If you
installed Cilium 1.9.2 or newer via the provided quick-install.yaml, you can deploy Hubble Relay and UI on top of your
existing installation with the following command:

Diving Deep into Kubernetes Networking48 suse.com

Installation via quick-hubble-install.yaml works if the installed Cilium version is 1.9.2 or newer. Any users of Cilium
1.9.0 or 1.9.1 should upgrade to a newer version by applying the most recent Cilium quick-install.yaml first. As an
alternate method, it is possible to manually generate a YAML manifest for the Cilium DaemonSet and Hubble Relay/UI.
The generated YAML can be applied on top of an existing installation:

The Cilium agent pods will be restarted in the process.

Once the Hubble UI pod is started, use port forwarding for the hubble-ui service. This allows opening the UI locally on a
browser:

Then, open http://localhost:12000/ to access the UI.

Hubble UI is not the only way to get access to Hubble data. A command line tool, the Hubble CLI, is also available
for installation for Linux, MacOS, and Windows users. Additional methods to implement Hubble are available in the
installation documentation for RKE.

Set this to your installed Cilium version

export CILIUM_VERSION=1.9.1

Please set any custom Helm values you may need for Cilium,

such as for example `--set operator.replicas=1` on single-cluster nodes.

helm template cilium cilium/cilium --version $CILIUM_VERSION \\

 --namespace $CILIUM_NAMESPACE \\

 --set hubble.tls.auto.method=”cronJob” \\

 --set hubble.listenAddress=”:4244” \\

 --set hubble.relay.enabled=true \\

 --set hubble.ui.enabled=true > cilium-with-hubble.yaml

This will modify your existing Cilium DaemonSet and ConfigMap

kubectl apply -f cilium-with-hubble.yaml

kubectl port-forward -n $CILIUM_NAMESPACE svc/hubble-ui --address 0.0.0.0 --address ::
12000:80

http://localhost:12000/
https://docs.cilium.io/en/v1.9/gettingstarted/k8s-install-rke/

Diving Deep into Kubernetes Networking49 suse.com

Architecture
Kube-Vip offers Kubernetes load balancing with a lightweight and multi-architecture, providing both high availability
(HA) networking endpoints and additional functionality for underlying network services. It’s suitable for those seeking
a decoupled centralized type: LoadBalancer solution with a focus on high availability for a Kubernetes cluster. With a
multi-architecture design, all of the components are built for Linux but are also built for both x86 and armv7, armhvf,
ppc64le. This means that kube-vip will run well in bare-metal, virtual and edge (raspberry pi or small arm SoC devices).

Kube-Vip offers two main technologies to provide high-availability and networking functions as part of a VIP/Load-
balancing solution.

1.	 Cluster

The kube-vip service builds a multi-node or multi-pod cluster to provide HA. In ARP mode, a leader is elected, which
inherits the Virtual IP and becomes the leader of the load-balancing within the cluster. With BGP, all nodes will advertise
the VIP address. When using ARP or layer2, Kube-Vip uses leader election.

2.	 Virtual IP

The leader in the cluster assumes the vip
and has it bound to the selected interface
declared in the configuration. The vip is
evacuated first when the leader changes;
in failure scenarios the vip is directly
assumed by the next elected leader.

When the vip moves from one host to
another, any host that has been using the
vip will retain the previous vip <-> MAC
address mapping until the ARP expires the
old entry and retrieves a new vip <-> MAC
mapping.

As shown in the diagram below, kube-
vip requires Kube-Vip Deployment as
well as the Plunder Cloud Provider to
function. Plunder Cloud Provider uses the
Kubernetes cloud-provider SDK to provide
the same cloud-like services one would
expect from leading cloud platforms.
When a user requests functionality,
the cloud provider communicates to
the underlying vendor and provisions
the required service. Plunder cloud
Provider is currently designed to
intercept the creation of LoadBalancers
and translate that into a kube-vip
load balancer.

plndr

kube-system

default

namespace1

plndr

plndr

node 01 node 02 node 99

Networking with Kube-Vip

Cloud Controller

Starboard (daemonset)

kube-vip *active

kube-vip *passive

configmap

https://pkg.go.dev/k8s.io/client-go/tools/leaderelection

Diving Deep into Kubernetes Networking50 suse.com

Architecture of the kube-vip kubernetes load-balancer, including its Plunder Cloud Provider and Kube-Vip
Deployment components.

Users can expect easy manifest deployment, support for management via BGP or ARP (Address resolution protocol)
functionality, with support from core Equinix Metal integration (such as CCM, Packet API).

While Kube-Vip was originally created to provide a HA solution for the Kubernetes control plane, it has evolved to
incorporate that same functionality into Kubernetes service type load-balancers. VIP addresses can be both IPv4 or
IPv6. The Control Plane features ARP (Layer 2) or BGP (Layer 3), using either leader election or raft, with HA facilitated
by kubeadm (static Pods) or K3s/and others (daemonsets).

The Service LoadBalancer uses leader election for ARP (Layer 2), and multiple nodes with BGP. Users can address
pools per namespace or global, address via an existing network DHCP, or exposure to gateway via UPNP.

Install Kube-Vip with Kubernetes
The latest instructios for installing Kube-Vip are on the project website, https://kube-vip.io/. In Hybrid mode, kube-
vip manages a virtual IP address that is passed through its configuration for a HA Kubernetes cluster. It also
monitors services of type:LoadBalancer; once their spec.LoadBalancerIP is updated, most typically by a cloud
controller, it will advertise this address using BGP/ARP.

Note that the “hybrid” mode is now the default mode in kube-vip from 0.2.3 onwards. It allows both modes to be
enabled at the same time.

Create the RBAC Settings

The daemonSet runs within the Kubernetes cluster, and it needs the correct access to watch Kubernetes services
and other objects. To facilitate this, start by creating a User, Role, and a binding. Apply this with the command:

Generate a Manifest

Next, generate a simple BGP configuration by setting the configuration details as follows:

export VIP=192.168.0.40
export INTERFACE=<interface>

Configure to Use a Container Runtime

Using the container itself is the easiest method to generate a manifest. You can create an alias for different
container runtimes as follows:

containerd

alias kube-vip=”ctr run --rm --net-host ghcr.io/kube-vip/kube-vip:0.3.7 vip”

Docker

alias kube-vip=”docker run --network host --rm ghcr.io/kube-vip/kube-vip:0.3.7”

kubectl apply -f https://kube-vip.io/manifests/rbac.yaml

https://kube-vip.io/

Diving Deep into Kubernetes Networking51 suse.com

BGP Example

This configuration creates a manifest that will start kube-vip providing controlplane and services management.
Unlike ARP, all nodes in the BGP configuration advertise virtual IP addresses. It’s useful to bind the address to lo to
avoid interacting with multiple devices with the same address on public interfaces. Peers can be specified in a
comma separated list in the format of address:AS:password:multihop.

export INTERFACE=lo

Generated Manifest

kube-vip manifest daemonset \

 --interface $INTERFACE \

 --vip $VIP \

 --controlplane \

 --services \

 --inCluster \

 --taint \

 --bgp \

 --bgppeers 192.168.0.10:65000::false,192.168.0.11:65000::false

apiVersion: apps/v1
kind: DaemonSet
metadata:
 creationTimestamp: null
 name: kube-vip-ds
 namespace: kube-system
spec:
 selector:
 matchLabels:
 name: kube-vip-ds
 template:
 metadata:
 creationTimestamp: null
 labels:
 name: kube-vip-ds
 spec:
 containers:
 - args:
 - manager
 env:
 - name: vip_arp
 value: “false”
 - name: vip_interface
 value: lo
 - name: port
 value: “6443”

Diving Deep into Kubernetes Networking52 suse.com

 - name: vip_cidr
 value: “32”
 - name: cp_enable
 value: “true”
 - name: cp_namespace
 value: kube-system
 - name: svc_enable
 value: “true”
 - name: bgp_enable
 value: “true”
 - name: bgp_peers
 value: “192.168.0.10:65000::false,192.168.0.11:65000::false”
 - name: vip_address
192.168.0.10:65000::false,192.168.0.11:65000::false
 value: 192.168.0.40
 image: ghcr.io/kube-vip/kube-vip:0.3.7
 imagePullPolicy: Always
 name: kube-vip
 resources: {}
 securityContext:
 capabilities:
 add:
 - NET_ADMIN
 - SYS_TIME
 hostNetwork: true
 serviceAccountName: kube-vip
 nodeSelector:
 node-role.kubernetes.io/master: “true”
 tolerations:
 - effect: NoSchedule
 key: node-role.kubernetes.io/master
 updateStrategy: {}

Manifest Overview

	— nodeSelector – This feature ensures that the particular daemonset runs only on control plane nodes

	— serviceAccountName: kube-vip – This feature specifies the user in the rbac to provide permissions to receive/
update services

	— hostNetwork: true – This feature entails a pod that modifies interfaces (for VIPs)

	— env {...} – This configuration is passed into the kube-vip pod through environment variables

Diving Deep into Kubernetes Networking53 suse.com

Equinix Metal Overview (using the Equinix Metal CCM)

For users interested in running type:LoadBalancer services on worker nodes only, the following example
creates a daemonset that will run kube-vip. This process requires installation of the Equinix Metal CCM and
configuration of the cluster/kubelet to use an external cloud provider. Equinix Metal CCM applies the BGP
configuration to the node annotations, making it easier for kube-vip to expose load balancer addresses.
The --annotations metal.equinix.com causes kube-vip to monitor the annotations of the worker node it is
running on. After the configuration has been applied by the CCM, the kube-vip pod is ready to advertise BGP
addresses for the service.

If kube-vip has been waiting for a long time, confirm that the annotations have been applied correctly by
running the describe on the node as follows:

If you find errors regarding 169.254.255.1 or 169.254.255.2 in the kube-vip logs, it is possible that the
nodes are missing the routes to the ToR switches providing BGP peering. Nodes can be replaced with the
below command:

kube-vip manifest daemonset \
 --interface $INTERFACE \
 --services \
 --bgp \
 --annotations metal.equinix.com \
 --inCluster | k apply -f -

kubectl describe node k8s.bgp02
...
Annotations: kubeadm.alpha.kubernetes.io/cri-socket: /var/run/
dockershim.sock
 node.alpha.kubernetes.io/ttl: 0
 metal.equinix.com/node-asn: 65000
 metal.equinix.com/peer-asn: 65530
 metal.equinix.com/peer-ip: x.x.x.x
 metal.equinix.com/src-ip: x.x.x.x

GATEWAY_IP=$(curl https://metadata.platformequinix.com/metadata | jq -r
“.network.addresses[] | select(.public == false) | .gateway”)
ip route add 169.254.255.1 via $GATEWAY_IP
ip route add 169.254.255.2 via $GATEWAY_IP

You can also examine the logs of the Packet CCM to reveal why the node is not yet ready.

Diving Deep into Kubernetes Networking54 suse.com

K3s Overview on Equinix Metal

Step 1: Tidy Up

Run the following:

rm -rf /var/lib/rancher /etc/rancher ~/.kube/*; ip addr flush dev lo;
ip addr add 127.0.0.1/8 dev lo; mkdir -p

/var/lib/rancher/k3s/server/manifests/

Step 2: Get rbac

Run:

curl https://kube-vip.io/manifests/rbac.yaml >
/var/lib/rancher/k3s/server/manifests/rbac.yaml

Step 3: Generate kube-vip (get EIP from CLI or UI)

Run:

Step 4: Up Cluster

Run:

K3S_TOKEN=SECRET k3s server --cluster-init --tls-san $EIP --no-deploy servicelb --disable-
cloud-controller

Step 5: Add CCM

Run:

export EIP=x.x.x.x
export INTERFACE=lo

alias k=”k3s kubectl” k apply -f ./secret.yaml

kube-vip manifest daemonset \
 --interface $INTERFACE \
 --vip $EIP \
 --controlplane \
 --services \
 --inCluster \
 --taint \
 --bgp \
 --metal \
 --provider-config /etc/cloud-sa/cloud-sa.json | tee
/var/lib/rancher/k3s/server/manifests/vip.yaml

k apply -f https://gist.githubusercontent.com/
thebsdbox/c86dd970549638105af8d96439175a59/
raw/4abf90fb7929ded3f7a201818efbb6164b7081f0/ccm.yaml

Diving Deep into Kubernetes Networking55 suse.com

Step 6: Ready for Demo

Run:

k apply -f https://k8s.io/examples/application/deployment.yaml k expose deployment nginx-
deployment --port=80 --type=LoadBalancer --name=nginx

Step 7: Watch and Test

Run:

k get svc --watch

Diving Deep into Kubernetes Networking56 suse.com

Networking with MetalLB
Architecture
MetalLB offers a load-balancer implementation for bare metal Kubernetes clusters, using standard routing
protocols, that integrates with standard network equipment. Users can bring a first-class balancer for bare-metal
clusters, rather than relying on “NodePort” and “externalIPs” services.

To run MetalLB, users need:

	— A Kubernetes cluster running Kubernetes 1.13.0 or later, without existing network load-balancing functionality.

	— A cluster network configuration that compatible with MetalLB. These include Calico, Canal, Cilium, Flannel, Kube-
ovn, Kube-router, and Weave Net.

	— IPv4 addresses for MetalLB to allocate.

	— One or more routers capable of speaking BGP, if using the BGP operating mode.

	— Traffic on port 7946 (TCP & UDP) allowed between nodes.

Note that MetalLB is designed for bare-metal clusters. Generally, even cloud providers that offer “dedicated servers”
will not support the network protocols that MetalLB requires.

Install MetalLB with Kubernetes
MetalLB offers three supported methods of installation: using plain Kubernetes manifests, using Kustomize, or using
Helm. Start by assessing whether you are using kube-proxy in IPVS mode; Kubernetes v1.14.2 and later requires you to
enable strict ARP mode. This is not necessarily if you are using kube-router as service-proxy because it enables strict
ARP by default.

Edit kube-proxy config in current cluster:

kubectl edit configmap -n kube-system kube-proxy

apiVersion: kubeproxy.config.k8s.io/v1alpha1
kind: KubeProxyConfiguration
mode: “ipvs”
ipvs:
 strictARP: true

and set:

You may also add this configuration snippet to kubeadm-config, if it is appended with --- after the main
configuration.

The following shell snippets can help automate this change:

Diving Deep into Kubernetes Networking57 suse.com

see what changes would be made, returns nonzero returncode if different
kubectl get configmap kube-proxy -n kube-system -o yaml | \
sed -e “s/strictARP: false/strictARP: true/” | \
kubectl diff -f - -n kube-system

actually apply the changes, returns nonzero returncode on errors only
kubectl get configmap kube-proxy -n kube-system -o yaml | \
sed -e “s/strictARP: false/strictARP: true/” | \
kubectl apply -f - -n kube-system

kubectl apply -f https://raw.githubusercontent.com/metallb/metallb/v0.11.0/manifests/
namespace.yaml

kubectl apply -f https://raw.githubusercontent.com/metallb/metallb/v0.11.0/manifests/
metallb.yaml

kustomization.yml
namespace: metallb-system

resources:
 - github.com/metallb/metallb//manifests?ref=v0.11.0
 - configmap.yml

Installation by Manifest

To install MetalLB using manifest, apply:

This deploys MetalLB to the cluster under the metallb-system namespace. Manifest components include:

	— The metallb-system/controller deployment, the cluster-wide controller handling IP address assignments

	— The metallb-system/speaker daemonset, the component that speaks your choice of protocol(s) to make the
services reachable

	— Service accounts for the controller and speaker, plus RBAC permissions required by the components to function.

The installation manifest does not include a configuration file. MetalLB’s components will still start, but will remain
idle until you define and deploy a configmap.

Installation with Kustomize

You can install MetalLB with Kustomize by entering the following command to point at the remote kustomization file:

Diving Deep into Kubernetes Networking58 suse.com

If using a configMapGenerator for config file, tell Kustomize not to append a hash to the config map because MetalLB
is waiting for a config map named config.

Installation with Helm

To install MetallLB with Helm, use the Helm chart repository at https://metallb.github.io/metallb.

You may specify a values file on installation. This is recommended practice to provide configs in Helm values:

MetalLB configs are set in values.yaml under configInLine:

kustomization.yml
namespace: metallb-system

resources:
 - github.com/metallb/metallb//manifests?ref=v0.11.0

configMapGenerator:
- name: config
 files:
 - configs/config

generatorOptions:
 disableNameSuffixHash: true

helm repo add metallb https://metallb.github.io/metallb
helm install metallb metallb/metallb

helm install metallb metallb/metallb -f values.yaml

configInline:
 address-pools:
 - name: default
 protocol: layer2
 addresses:
 - 198.51.100.0/24

https://metallb.github.io/metallb/

Diving Deep into Kubernetes Networking59 suse.com

Load Balancers and Ingress Controllers

The Benefits of Load Balancers
A load balancer provides valuable features for any deployment, whether it’s running inside or outside of the
Kubernetes cluster. In addition to distributing load across multiple backends, a load balancer can also move TLS
processing to a central location, route traffic based on the requester’s hardware or browser, the requested site, or a
path within the URL, or it can enable canary deployments and zero-downtime upgrades.

Load Distribution

When client requests arrive, the load balancer directs them across a pool of worker nodes commonly referred to
as backends. Because the load balancer presents itself as the endpoint for the site, the clients don’t know anything
about these backends. The load balancer tracks the health and number of connections to each backend, and it
works according to its configured policy to evenly distribute the traffic. If a backend fails or becomes overloaded, the
load balancer stops sending traffic to it until it returns to a healthy state. This scenario enables horizontal scaling,
where a site can scale
capacity by adding and
removing backends.

Up until now, we’ve focused on how to configure networking
and how the various providers work in a Kubernetes cluster.
While these systems define and control communication within
the cluster and between its nodes, they do not, on their own,
address how traffic from outside of the cluster finds its way to a
destination or what part DNS plays in that process. To understand
the full picture, we need to explore how Kubernetes approaches
load balancing and DNS.

Request A

Request B

Request C

Load Balancer

Host

Host

Host

Diving Deep into Kubernetes Networking60 suse.com

SSL/TLS Termination

The overhead of encrypting and decrypting data can impact the performance of a backend, so deployments
frequently move this work to the load balancer. Encrypted traffic lands on the load balancer, which decrypts it and
forwards it to a backend. By operating with a decrypted data stream, the load balancer can make informed decisions
about how to route the data because it’s now able to see more than the basic metadata present in the flow.

Routing By HTTP Host or Path

Organizations who run multiple applications frequently group them under the same logical namespace: their domain
name. In this scenario, a load balancer routes traffic based on parameters such as the requested host or site (the
Host header), or by the path requested in the URL.

CLI

User haproxy-www

Neutral Component

www-backend

www-1

www-2

Mongo
1 container

web.example.com

web.example.com/support web.example.com/career

Letchat 1
2 containers

Active

Active

Letchat 2
2 containers

Active Ngmix 1
2 containers

Active

Ngmix 2
2 containers

Active

Load Balancer
1 Container

Active

Diving Deep into Kubernetes Networking61 suse.com

Upgrades and Feature Flags

When a load balancer receives an HTTP request, the headers contain a wealth of extra information such as the
browser, the device, the operating system, and more. Site maintainers can use this information to route a subset of
the traffic to a different destination, perhaps to give an optimized experience to a particular class of mobile device,
to test a new feature before rolling it out everywhere, or to see the effect of different changes to the content and
determine which one has the more significant impact.

Load balancers also provide a way to roll out upgrades safely. Site administrators first deploy the new version of
the website or application to a new set of backends and test it outside of the standard rotation. When ready, they
incrementally add the new backends to the pool and rotate the old backends out. The load balancers keep existing
traffic on the old backends and direct new traffic to the new backends. Over time the sessions connected to the old
backends close, and only new sessions remain. The old backends are then terminated.

In the event of an unforeseen issue, the admins can quickly rotate the old backends into the pool and remove the
new ones, returning the site to its previous, working state.

Load Balancer

Load Balancer

V1

V2

V1 V1

V2 V1 V1

Diving Deep into Kubernetes Networking62 suse.com

Load Balancer

Neutral
ComponentServers>>

After

Before

Neutral
Component

Neutral
Component

Neutral
Component

Load Balancer

Neutral
Component

Neutral
Component

Neutral
Component

Neutral
Component

Load Balancer

Neutral
Component

Neutral
Component

Neutral
Component

Neutral
Component

Load Balancer

Neutral
Component

Neutral
Component

Neutral
Component

Neutral
Component

1

2

3

4

Diving Deep into Kubernetes Networking63 suse.com

Networking with Flannel and
Calico (Canal)
For some time an effort to integrate Flannel’s easy overlay networking engine and Calico’s network policy
enforcement ran under the project name Canal. The maintainers deprecated it as a separate project, and instead,
the Calico documentation contains instructions on deploying Flannel and Calico together (see previous section on
installing Calico on Kubernetes).

They only abandoned the name and status; the result remains the same. Flannel provides an overlay network using
one of its backends, and Calico provides granular access control to the running workloads with its network policy
implementation.

Load Balancing in Kubernetes
Kubernetes either can create internal load balancers using Kubernetes resources such as Services and Ingresses, or
it can deploy and manage external load balancers such as those provided by AWS, GCP, F5, and others.

Internal Load Balancing

The easiest and simplest load balancer in Kubernetes is the Service. A Service routes traffic via round-robin to one or
more replicas running within the cluster. The Service finds the replicas via a selector, which is a key/value pair that it
looks for in the Pod labels. Any Pod that matches the selector is a candidate for traffic, and the Service sends each
subsequent request to the next Pod in the list.

Any CNI enabled orchestrator

Orchestrator
Plugins

Calico Policy
Enforcement

Calico and Flannel
networking

Canal

flannel CNI plugin

Any Network Fabric

Calico CNI Plugin

BGP IPIP Native UDP VXLAN ...

Policy Enforcement

Etcd

Diving Deep into Kubernetes Networking64 suse.com

Services receive a stable IP address within the cluster, and if the cluster runs a DNS component like KubeDNS or
CoreDNS, it also receives a DNS name in the format of {name}.{namespace}.svc.cluster.local. For example,
applications within the cluster that want to communicate with a Service named my-service in the default
namespace would send traffic to my-service.default.svc.cluster.local.

The following manifest creates a simple load balancer:

When traffic arrives at the Service, kube-proxy forwards it to the appropriate backend.

kind: Service
apiVersion: v1
metadata:
 name: my-service
spec:
 selector:
 app: MyApp
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9376

Client

ServiceIP (IPTables) kube-proxy

Backend Pod 1
labels app-MyApp

port:9376

Backend Pod 2
labels app-MyApp

port:9376

Backend Pod 3
labels app-MyApp

port:9376

apiserver

Host

Diving Deep into Kubernetes Networking65 suse.com

External Load Balancing
Layer 4

A load balancer that works at Layer 4 only routes traffic based on the TCP or UDP port. It does not look inside the
packets or the data stream to make any decisions.

A Kubernetes Service of the type LoadBalancer creates a Layer 4 load balancer outside of the cluster, but it only
does this if the cluster knows how. External load balancers require that the cluster use a supported cloud provider
in its configuration and that the configuration for the cloud provider includes the relevant access credentials when
required.

Once created, the Status field of the service shows the address of the external load balancer.

The following manifest creates an external Layer 4 load balancer:

kind: Service
apiVersion: v1
metadata:
 name: my-service
spec:
 selector:
 app: MyApp
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9376
 clusterIP: 10.0.171.239
 loadBalancerIP: 78.11.24.19
 type: LoadBalancer
status:
 loadBalancer:
ingress:
 - ip: 146.148.47.155

GCP Node

Pod

Containers

Pod

Containers

GCE Kubernetes Cloud Provider

Cloud Load Balancer

Load Balancer Kubernetes Service

A part of Kubernetes code,
enabled as a plugin in
Kubernetes cluster

Invoked on Kubernetes LB
create/update

Programs the LB in Google
cloud allowing traffic to be
distributed between workload
pods GCE nodes.

GCP Node GCP Node

Workload

Pod

Containers

Pod

Containers

Diving Deep into Kubernetes Networking66 suse.com

Because a Layer 4 load balancer does not look into the packet stream, it only has basic capabilities. If a site runs multiple
applications, every one of them requires an external load balancer. Escalating costs make that scenario inefficient.

Furthermore, because the LoadBalancer Service type requires a supported external cloud provider, and because
Kubernetes only supports a small number of providers, many sites instead choose to run a Layer 7 load balancer inside
of the cluster.

Layer 7

The Kubernetes resource that handles load balancing at Layer 7 is called an Ingress, and the component that creates
Ingresses is known as an Ingress Controller.

The Ingress Resource

The Ingress resource defines the rules and routing for a particular application. Any number of Ingresses can exist within a
cluster, each using a combination of host, path, or other rules to send traffic to a Service and then on to the Pods.

The following manifest defines an Ingress for the site foo.bar.com, sending /foo to the s1 Service and /bar
to the s2 Service:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: test
 annotations:
 nginx.ingress.Kubernetes.io/rewrite-target: /
spec:
 rules:
 - host: foo.bar.com
 http:
 paths:
 - path: /foo
 backend:
 serviceName: s1
 servicePort: 80
 - path: /bar
 backend:
 serviceName: s2
 servicePort: 80

Diving Deep into Kubernetes Networking67 suse.com

The Ingress Controller

An Ingress Controller listens for requests to create or modify Ingresses within the cluster and converts the rules in the
manifests into configuration directives for a load balancing component. That component is either a software load
balancer such as Nginx, HAProxy, or Traefik, or it’s an external load balancer such as an Amazon ALB or an F5 Big/IP.

When working with an external load balancer the Ingress Controller is a lightweight component that translates the
Ingress resource definitions from the cluster into API calls that configure the external piece.

The following diagram shows an Ingress Controller managing an Amazon ALB.

Cloud Load Balancer

userdomain.com/website userdomain.com/chat

ALB Ingress Controller

Runs as a Kubernetes
application

Listens to ingress
create/update events

Programs ALB with traffic
forwarding rules

Website Nodeport Service Chat Nodeport Service Website Nodeport Service Chat Nodeport Service

EC2 Node

Website 1 Letschat 1

EC2 Node

Website 2 Letschat 2

Diving Deep into Kubernetes Networking68 suse.com

In the case of internal software load balancers, the Ingress Controller combines the management and load
balancing components into one piece. It uses the instructions in the Ingress resource to reconfigure itself.

The following diagram shows a Nginx Ingress Controller working within a cluster.

Kubernetes uses annotations to control the behavior of the Ingress Controller. Although each controller has a list
of accepted annotations, their use activates advanced features such as canary deployments, default backends,
timeouts, redirects, CORS configuration, and more.

Nginx Ingress controller

userdomain.com/chat

userdomain.com/website

userdomain.com/chat

userdomain.com/website

Runs as a Kubernetes
Native App

Listens to ingress
create/update

Programs itself with traffic
forwarding rules

Nginx Nodeport Service Nginx Nodeport Service

Node

Website 1 Letschat 1

Nginx Ingress Controller

Controller Load Balancer

Website 2 Letschat 2

Nginx Ingress Controller

Controller Load Balancer

Node

Nginx Daemonset

Diving Deep into Kubernetes Networking69 suse.com

Load Balancing with Cloud Providers
Load balancers have a couple of limitations you should be aware of.

First, load balancers can only handle one IP address per service, which means if you run multiple services in your
cluster, you must have a load balancer for each service. Running multiples load balancers can be expensive.

Second, if you want to use a load balancer with a Hosted Kubernetes cluster (i.e., clusters hosted in GKE, EKS,
or AKS), the load balancer must be running within that cloud provider’s infrastructure. In other words, cluster
deployments on Amazon EKS, Google GKE, Azure AKS, and RKE on EC2 are supported by layer-4 load balancers
from their respective cloud provider. Amazon EKS and Google GKE provide layer-7 load balancer support; layer 7
load balancer support on RKE on EC2 is provided by Nginx Ingress Controller, and is not supported on Azure AKS.

On cloud providers which support external load balancers, setting the type field to LoadBalancer provisions
a load balancer for your Service. The actual creation of the load balancer happens asynchronously, and
information about the provisioned balancer is published in the Service’s .status.loadBalancer field

For example:

apiVersion: v1
kind: Service
metadata:
 name: my-service
spec:
 selector:
 app: MyApp
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9376
 clusterIP: 10.0.171.239
 type: LoadBalancer
status:
 loadBalancer:
 ingress:
 - ip: 192.0.2.127

Traffic from the external load balancer is directed at the backend Pods. The cloud provider decides how it is
load balanced.

Some cloud providers allow you to specify the loadBalancerIP, in which case the load-balancer is created with
the user-specified loadBalancerIP. If the loadBalancerIP field is not specified, the loadBalancer is set up with
an ephemeral IP address. If you specify a loadBalancerIP but your cloud provider does not support the feature,
the loadbalancerIP field that you set is ignored.

Additional documentation from Kubernetes can help you properly configure your load balancer for a given
cloud provider.

https://kubernetes.io/docs/concepts/services-networking/service/

Diving Deep into Kubernetes Networking70 suse.com

Conclusion
Kubernetes is powerful. It takes a simple container engine like
Docker and elevates it to a level of usability appropriate for
production environments. What starts as a series of Netfilter
rules on a single host grows with Kubernetes to span multiple
hosts, or even multiple disparate networks separated by
geographical boundaries, with load balancers distributing
traffic efficiently on any deployment. After reading this
book, you’re ready to make informed decisions about which
networking approach to use, their capabilities, and how to
leverage Kubernetes resources to connect the outside world to
the applications running inside the cluster.

Thank You

SUSE
Maxfeldstrasse 5
90409
Nuremberg
www.suse.com

For more information, contact SUSE at:
+1 800 796 3700 (U.S./Canada)
+49 (0)911-740 53-0 (Worldwide)

© 2022 SUSE LLC. All Rights Reserved. SUSE and the SUSE
logo are registered trademarks of SUSE LLC in the United
States and other countries. All third-party trademarks are
the property of their respective owners.

	Introduction -3

