
Diving Deep
into Kubernetes
Networking

AUTHORS

Adrian Goins
Alena Prokharchyk
Murali Paluru

JANUARY 2019

TABLE OF CONTENTS DIVING DEEP INTO KUBERNETES NETWORKING

TABLE OF CONTENTS

Introduction .. 1
Goals of This Book ... 1

How This Book is Organized .. 1

An Introduction to Networking with Docker ..2
Docker Networking Types ..2

Container-to-Container Communication ..8

Container Communication Between Hosts... 9

Interlude: Netfilter and iptables rules ..10

An Introduction to Kubernetes Networking ... 11
Pod Networking ..12

Network Policy ..15

Container Networking Interface .. 20

Networking with Flannel ..21
Running Flannel with Kubernetes ...21

Flannel Backends ..21

Networking with Calico ... 23
Architecture ... 23

Install Calico with Kubernetes .. 23

Using BGP for Route Announcements ... 26

Using IP-in-IP ... 29

Combining Flannel and Calico (Canal) ...30

Load Balancers and Ingress Controllers ..31
The Benefits of Load Balancers ...31

Load Balancing in Kubernetes ..35

Conclusion ..40

1JANUARY 2019

INTrOduCTIONDIVING DEEP INTO KUBERNETES NETWORKING

Introduction

Kubernetes has evolved into a strategic platform for deploying and scaling
applications in data centers and the cloud. It provides built-in abstractions for
efficiently deploying, scaling, and managing applications. Kubernetes also addresses
concerns such as storage, networking, load balancing, and multi-cloud deployments.

Networking is a critical component for the success of a Kubernetes implementation.
Network components in a Kubernetes cluster control interaction at multiple layers,
from communication between containers running on different hosts to exposing
services to clients outside of a cluster. The requirements within each environment
are different, so before we choose which solution is the most appropriate, we have to
understand how networking works within Kubernetes and what benefits each solution
provides.

GOALS OF THIS BOOK
This book introduces various networking concepts related to Kubernetes that an operator, developer, or decision maker might
find useful. Networking is a complex topic and even more so when it comes to a distributed system like Kubernetes. It is essential
to understand the technology, the tooling, and the available choices. These choices affect an organization's ability to scale the
infrastructure and the applications running on top of it.

The reader is expected to have a basic understanding of containers, Kubernetes, and operating system fundamentals.

HOW THIS BOOK IS OrGANIZEd
In this book, we cover Kubernetes networking from the basics to the advanced topics. We start by explaining Docker container
networking, as Docker is a fundamental component of Kubernetes. We then introduce Kubernetes networking, its unique model
and how it seamlessly scales. In doing so, we explain the abstractions that enable Kubernetes to communicate effectively between
applications. We touch upon the Container Network Interface (CNI) specification and how it relates to Kubernetes, and finally,
we do a deep dive into some of the more popular CNI plugins for Kubernetes such as Calico, Flannel and Canal. We discuss load
balancing, DNS and how to expose applications to the outside world.

This book is based on the
Networking Master Class online
meetup that is available on
YouTube.

This eBook covers Kubernetes
networking concepts, but we do
not intend for it to be a detailed
explanation of Kubernetes in its
entirety. For more information
on Kubernetes, we recommend
reading the Kubernetes
documentation or enrolling in a
training program from a CNCF-
certified training provider.

https://www.youtube.com/watch?v=GXq3FS8M_kw

2JANUARY 2019

AN INTrOduCTION TO NETWOrKING WITH dOCKErDIVING DEEP INTO KUBERNETES NETWORKING

dOCKEr NETWOrKING TYPES
When a Docker container launches, the Docker engine assigns it a network
interface with an IP address, a default gateway, and other components, such as a
routing table and DNS services. By default, all addresses come from the same pool,
and all containers on the same host can communicate with one another. We can
change this by defining the network to which the container should connect, either
by creating a custom user-defined network or by using a network provider plugin.

The network providers are pluggable using drivers. We connect a Docker container
to a particular network by using the --net switch when launching it.

The following command launches a container from the busybox image and joins it
to the host network. This container prints its IP address and then exits.

docker run --rm --net=host busybox ip addr

Docker offers five network types, each with a different capacity for communication
with other network entities.

A. Host Networking: The container shares the same IP address and network namespace as that of the host. Services
running inside of this container have the same network capabilities as services running directly on the host.

B. Bridge Networking: The container runs in a private network internal to the host. Communication is open to other
containers in the same network. Communication with services outside of the host goes through network address
translation (NAT) before exiting the host. (This is the default mode of networking when the --net option isn't specified)

C. Custom bridge network: This is the same as Bridge Networking but uses a bridge explicitly created for this (and other)
containers. An example of how to use this would be a container that runs on an exclusive "database" bridge network.
Another container can have an interface on the default bridge and the database bridge, enabling it to communicate with
both networks.

D. Container-defined Networking: A container can share the address and network configuration of another container. This
type enables process isolation between containers, where each container runs one service but where services can still
communicate with one another on the localhost address.

E. No networking: This option disables all networking for the container.

An Introduction
to Networking
with Docker

Docker follows a unique
approach to networking
that is very different from
the Kubernetes approach.
Understanding how
Docker works help later in
understanding the Kubernetes
model, since Docker containers
are the fundamental unit of
deployment in Kubernetes.

Host Networking
The host mode of networking allows the Docker container to share the same IP address
as that of the host and disables the network isolation otherwise provided by network
namespaces. The container’s network stack is mapped directly to the host’s network
stack. All interfaces and addresses on the host are visible within the container, and all
communication possible to or from the host is possible to or from the container.

If you run the command ip addr on a host (or ifconfig -a if your host doesn’t have the ip
command available), you will see information about the network interfaces.

Container

eth0

3JANUARY 2019

AN INTrOduCTION TO NETWOrKING WITH dOCKErDIVING DEEP INTO KUBERNETES NETWORKING

If you run the same command from a container using host networking, you will see the same information.

4JANUARY 2019

AN INTrOduCTION TO NETWOrKING WITH dOCKErDIVING DEEP INTO KUBERNETES NETWORKING

Bridge Networking
In a standard Docker installation, the
Docker daemon creates a bridge on the
host with the name of docker0. When a
container launches, Docker then creates
a virtual ethernet device for it. This device
appears within the container as eth0 and
on the host with a name like vethxxx
where xxx is a unique identifier for the
interface. The vethxxx interface is added
to the docker0 bridge, and this enables
communication with other containers on
the same host that also use the default
bridge.

To demonstrate using the default bridge,
run the following command on a host
with Docker installed. Since we are not
specifying the network - the container
will connect to the default bridge when it
launches.

Run the ip addr and ip route commands inside of the container. You will see the IP address of the container with the eth0
interface:

Container

docker0 bridge

eth0

Container

eth0

eth0 ip tables

vethxxx vethyyy

5JANUARY 2019

AN INTrOduCTION TO NETWOrKING WITH dOCKErDIVING DEEP INTO KUBERNETES NETWORKING

In another terminal connected to the host, run the ip addr command. You will see the corresponding interface created for the
container. In the image below it is named veth5dd2b68@if9. Yours will be different.

Although Docker mapped the container IPs on the bridge, network services running inside of the container are not visible outside
of the host. To make them visible, the Docker Engine must be told when launching a container to map ports from that container to
ports on the host. This process is called publishing. For example, if you want to map port 80 of a container to port 8080 on the host,
then you would have to publish the port as shown in the following command:

docker run --name nginx -p 8080:80 nginx

By default, the Docker container can send traffic to any destination. The Docker daemon creates a rule within Netfilter that
modifies outbound packets and changes the source address to be the address of the host itself. The Netfilter configuration allows
inbound traffic via the rules that Docker creates when initially publishing the container's ports.

The output included below shows the Netfilter rules created by Docker when it publishes a container’s ports.

6JANUARY 2019

AN INTrOduCTION TO NETWOrKING WITH dOCKErDIVING DEEP INTO KUBERNETES NETWORKING

NAT table within Netfilter

7JANUARY 2019

AN INTrOduCTION TO NETWOrKING WITH dOCKErDIVING DEEP INTO KUBERNETES NETWORKING

Custom Bridge Network
There is no requirement to use the default bridge on the host; it’s easy to create a new bridge network and attach containers to
it. This provides better isolation and interoperability between containers, and custom bridge networks have better security and
features than the default bridge.

• All containers in a custom bridge can communicate with the ports of other containers on that bridge. This means
that you do not need to publish the ports explicitly. It also ensures that the communication between them is
secure. Imagine an application in which a backend container and a database container need to communicate and
where we also want to make sure that no external entity can talk to the database. We do this with a custom bridge
network in which only the database container and the backend containers reside. You can explicitly expose the
backend API to the rest of the world using port publishing.

• The same is true with environment variables - environment variables in a bridge network are shared by all
containers on that bridge.

• Network configuration options such as MTU can differ between applications. By creating a bridge, you can
configure the network to best suit the applications connected to it.

To create a custom bridge network and two containers that use it, run the following commands:

$ docker network create mynetwork
$ docker run -it --rm --name=container-a --network=mynetwork busybox /bin/sh
$ docker run -it --rm --name=container-b --network=mynetwork busybox /bin/sh

Container-Defined Network
A specialized case of custom networking is when a container joins the network of another container. This is similar to how a Pod
works in Kubernetes.

The following commands launch two containers that share the same network namespace and thus share the same IP address.
Services running on one container can talk to services running on the other via the localhost address.

$ docker run -it --rm --name=container-a busybox /bin/sh
$ docker run -it --rm --name=container-b --network=container:container-a busybox /bin/sh

No Networking
This mode is useful when the container does not need to communicate with other containers or with the outside world. It is not
assigned an IP address, and it cannot publish any ports.

$ docker run --net=none --name busybox busybox ip a

8JANUARY 2019

AN INTrOduCTION TO NETWOrKING WITH dOCKErDIVING DEEP INTO KUBERNETES NETWORKING

CONTAINEr-TO-CONTAINEr COMMuNICATION
How do two containers on the same bridge network talk to one another?

In the above diagram, two containers running on the same host connect via the docker0 bridge. If 172.17.0.6 (on the left-hand
side) wants to send a request to 172.17.0.7 (the one on the right-hand side), the packets move as follows:

1. A packet leaves the container via eth0 and lands on the corresponding vethxxx interface.
2. The vethxxx interface connects to the vethyyy interface via the docker0 bridge.
3. The docker0 bridge forwards the packet to the vethyyy interface.
4. The packet moves to the eth0 interface within the destination container.

Container

docker0 bridge

eth0

1

Container

eth0

eth0 ip tables

vethxxx vethyyy

4

2 3

PACKET

src: 172.17.0.6/16

dest: 172.17.0.7

9JANUARY 2019

AN INTrOduCTION TO NETWOrKING WITH dOCKErDIVING DEEP INTO KUBERNETES NETWORKING

We can see this in action by using ping and tcpdump. Create two containers and inspect their network configuration with ip
addr and ip route. The default route for each container is via the eth0 interface.

Ping one container from the other, and let the command run so that we can inspect the traffic. Run tcpdump on the docker0
bridge on the host machine. You will see in the output that the traffic moves between the two containers via the docker0 bridge.

CONTAINEr COMMuNICATION BETWEEN HOSTS
So far we’ve discussed scenarios in which
containers communicate within a single host.
While interesting, real-world applications require
communication between containers running on
different hosts.

Cross-host networking usually uses an overlay
network, which builds a mesh between hosts and
employs a large block of IP addresses within that
mesh. The network driver tracks which addresses
are on which host and shuttles packets between
the hosts as necessary for inter-container
communication.

Overlay networks can be encrypted or
unencrypted. Unencrypted networks
are acceptable for environments in which all of the hosts are within the same LAN, but because overlay networks enable
communication between hosts across the Internet, consider the security requirements when choosing a network driver. If the
packets traverse a network that you don't control, encryption is a better choice.

The overlay network functionality built into Docker is called Swarm. When you connect a host to a swarm, the Docker engine on
each host handles communication and routing between the hosts.

Other overlay networks exist, such as IPVLAN, VxLAN, and MACVLAN. More solutions are available for Kubernetes.

For more information on pure-Docker networking implementations for cross-host networking (including Swarm mode and
libnetwork), please refer to the documentation available at the Docker website.

https://docs.docker.com

10JANUARY 2019

INTErLudE: NETFILTEr ANd IPTABLES ruLESDIVING DEEP INTO KUBERNETES NETWORKING

The Filter Table
Rules in the Filter table control if a packet is allowed or
denied. Packets which are allowed are forwarded whereas
packets which are denied are either rejected or silently
dropped.

The NAT Table
These rules control network address translation. They
modify the source or destination address for the packet,
changing how the kernel routes the packet.

The Mangle Table
The headers of packets which go through this table are
altered, changing the way the packet behaves. Netfilter
might shorten the TTL, redirect it to a different address, or
change the number of network hops.

Interlude: Netfilter and
iptables rules

In the earlier section on Docker networking, we looked
at how Docker handles communication between
containers. On a Linux host, the component which
handles this is called Netfilter, or more commonly by the
command used to configure it: iptables.

Netfilter manages the rules that define network
communication for the Linux kernel. These rules permit,
deny, route, modify, and forward packets. It organizes
these rules into tables according to their purpose.

Raw Table
This table marks packets to bypass the iptables stateful connection tracking.

Security Table
This table sets the SELinux security context marks on packets. Setting the marks affects how SELinux (or systems that can
interpret SELinux security contexts) handle the packets. The rules in this table set marks on a per-packet or per-connection basis.

Netfilter organizes the rules in a table into chains. Chains are the means by which Netfilter hooks in the kernel intercept packets as
they move through processing. Packets flow through one or more chains and exit when they match a rule.

A rule defines a set of conditions, and if the packet matches those conditions, an action is taken. The universe of actions is diverse,
but examples include:

• Block all connections originating from a specific IP address.
• Block connections to a network interface.
• Allow all HTTP/HTTPS connections.
• Block connections to specific ports.

The action that a rule takes is called a target, and represents the decision to accept, drop, or forward the packet.

The system comes with five default chains that match different phases of a packet’s journey through processing: PREROUTING,
INPUT, FORWARD, OUTPUT, and POSTROUTING. Users and programs may create additional chains and inject rules into the system
chains to forward packets to a custom chain for continued processing. This architecture allows the Netfilter configuration to follow
a logical structure, with chains representing groups of related rules.

Docker creates several chains, and it is the actions of these chains that handle communication between containers, the host, and
the outside world.

11JANUARY 2019

AN INTrOduCTION TO KuBErNETES NETWOrKINGDIVING DEEP INTO KUBERNETES NETWORKING

Pods
The smallest unit of deployment in a Kubernetes
cluster is the Pod, and all of the constructs related to
scheduling and orchestration assist in the deployment
and management of Pods.

In the simplest definition, a Pod encapsulates one or
more containers. Containers in the same Pod always
run on the same host. They share resources such as the
network namespace and storage.

Each Pod has a routable IP address assigned to it, not
to the containers running within it. Having a shared
network space for all containers means that the
containers inside can communicate with one another

over the localhost address, a feature not present in traditional Docker networking.

The most common use of a Pod is to run a single container. Situations where dif ferent processes work on the same
shared resource, such as content in a storage volume, benefit from having multiple containers in a single Pod. Some
projects inject containers into running Pods to deliver a service. An example of this is the Istio service mesh, which
uses this injected container as a proxy for all communication.

Because a Pod is the basic unit of deployment, we can map it to a single instance of an application. For example, a
three-tier application that runs a user interface (UI), a backend, and a database would model the deployment of the
application on Kubernetes with three Pods. If one tier of the application needed to scale, the number of Pods in that
tier could scale accordingly.

An Introduction to
Kubernetes Networking

Kubernetes networking builds on top of the
Docker and Netfilter constructs to tie multiple
components together into applications.
Kubernetes resources have specific names and
capabilities, and we want to understand those
before exploring their inner workings.

File Puller Web Server

Content Manager Consumers

Volume

Pod

12JANUARY 2019

AN INTrOduCTION TO KuBErNETES NETWOrKINGDIVING DEEP INTO KUBERNETES NETWORKING

Workloads
Production applications with users
run more than one instance of the
application. This enables fault tolerance,
where if one instance goes down, another
handles the traffic so that users don't
experience a disruption to the service.
In a traditional model that doesn't use
Kubernetes, these types of deployments
require that an external person or
software monitors the application and
acts accordingly.

Kubernetes recognizes that an
application might have unique
requirements. Does it need to run on
every host? Does it need to handle
state to avoid data corruption? Can all
of its pieces run anywhere, or do they
need special scheduling consideration?
To accommodate those situations
where a default structure won't give
the best results, Kubernetes provides
abstractions for different workload types.

REPLICASET

The ReplicaSet maintains the desired
number of copies of a Pod running
within the cluster. If a Pod or the host
on which it's running fails, Kubernetes
launches a replacement. In all cases,
Kubernetes works to maintain the
desired state of the ReplicaSet.

DEPLOYMENT

A Deployment manages a ReplicaSet.
Although it’s possible to launch
a ReplicaSet directly or to use a
ReplicationController, the use of a
Deployment gives more control over
the rollout strategies of the Pods that
the ReplicaSet controller manages.
By defining the desired states of Pods
through a Deployment, users can
perform updates to the image running
within the containers and maintain the
ability to perform rollbacks.

DAEMONSET

A DaemonSet runs one copy of the
Pod on each node in the Kubernetes
cluster. This workload model provides
the flexibility to run daemon processes
such as log management, monitoring,
storage providers, or network providers
that handle Pod networking for the
cluster.

STATEFULSET

A StatefulSet controller ensures that
the Pods it manages have durable
storage and persistent identity.
StatefulSets are appropriate for
situations where Pods have a similar
definition but need a unique identity,
ordered deployment and scaling,
and storage that persists across Pod
rescheduling.

POd NETWOrKING
The Pod is the smallest unit in Kubernetes, so it is essential to first understand Kubernetes networking in the context of
communication between Pods. Because a Pod can hold more than one container, we can start with a look at how communication
happens between containers in a Pod. Although Kubernetes can use Docker for the underlying container runtime, its approach to
networking differs slightly and imposes some basic principles:

• Any Pod can communicate with any other Pod without the use of network address translation (NAT). To facilitate
this, Kubernetes assigns each Pod an IP address that is routable within the cluster.

• A node can communicate with a Pod without the use of NAT.

• A Pod's awareness of its address is the same as how other resources see the address. The host's address doesn't
mask it.

These principles give a unique and first-class identity to every Pod in the cluster. Because of this, the networking model is more
straightforward and does not need to include port mapping for the running container workloads. By keeping the model simple,
migrations into a Kubernetes cluster require fewer changes to the container and how it communicates.

13JANUARY 2019

AN INTrOduCTION TO KuBErNETES NETWOrKINGDIVING DEEP INTO KUBERNETES NETWORKING

The Pause Container
A piece of infrastructure that enables many networking features in Kubernetes is known as the pause container. This container
runs alongside the containers defined in a Pod and is responsible for providing the network namespace that the other containers
share. It is analogous to joining the network of another container that we described in the User Defined Network section above.

The pause container was initially designed to act as the init process within a PID namespace shared by all containers in the Pod. It
performed the function of reaping zombie processes when a container died. PID namespace sharing is now disabled by default, so
unless it has been explicitly enabled in the kubelet, all containers run their process as PID 1.

If we launch a Pod running Nginx, we can inspect the Docker container running within the Pod.

When we do so, we see that the container does not have the network settings provided to it. The pause container which runs as
part of the Pod is the one which gives the networking constructs to the Pod.

Note: Run the commands below on the host where the nginx Pod is scheduled.

14JANUARY 2019

AN INTrOduCTION TO KuBErNETES NETWOrKINGDIVING DEEP INTO KUBERNETES NETWORKING

Kubernetes Service
Pods are ephemeral. The services that they provide may be critical, but because Kubernetes can terminate Pods at any time, they are
unreliable endpoints for direct communication. For example, the number of Pods in a ReplicaSet might change as the Deployment scales
it up or down to accommodate changes in load on the application, and it is unrealistic to expect every client to track these changes while
communicating with the Pods. Instead, Kubernetes offers the Service resource, which provides a stable IP address and balances traffic
across all of the Pods behind it. This abstraction brings stability and a reliable mechanism for communication between microservices.

Services which sit in front of Pods use a selector and labels to find the Pods they manage. All Pods with a label that matches the selector
receive traffic through the Service. Like a traditional load balancer, the service can expose the Pod functionality at any port, irrespective of
the port in use by the Pods themselves.

KUBE-PROXY

The kube-proxy daemon that runs on all nodes of the cluster allows the Service to map traffic from one port to another.

This component configures the Netfilter rules on all of the nodes according to the Service’s definition in the API server. From Kubernetes
1.9 onward it uses the netlink interface to create IPVS rules. These rules direct traffic to the appropriate Pod.

KUBERNETES SERVICE TYPES

A service definition specifies the type of Service to deploy, with each type of Service having a different set of capabilities.

Intra-Pod Communication
Kubernetes follows the IP-per-Pod model where it assigns a
routable IP address to the Pod. The containers within the Pod share
the same network space and communicate with one another over
localhost. Like processes running on a host, two containers
cannot each use the same network port, but we can work around
this by changing the manifest.

Inter-Pod Communication
Because it assigns routable IP addresses to each Pod, and because
it requires that all resources see the address of a Pod the same way,
Kubernetes assumes that all Pods communicate with one another
via their assigned addresses. Doing so removes the need for an
external service discovery mechanism.

ClusterIP

This type of Service is the default and
exists on an IP that is only visible within
the cluster. It enables cluster resources
to reach one another via a known address
while maintaining the security boundaries
of the cluster itself. For example, a
database used by a backend application
does not need to be visible outside of the
cluster, so using a service of type ClusterIP
is appropriate. The backend application
would expose an API for interacting with
records in the database, and a frontend
application or remote clients would
consume that API.

NodePort

A Service of type NodePort exposes the
same port on every node of the cluster. The
range of available ports is a cluster-level
configuration item, and the Service can
either choose one of the ports at random
or have one designated in its configuration.
This type of Service automatically creates
a ClusterIP Service as its target, and the
ClusterIP Service routes traffic to the Pods.

External load balancers frequently use
NodePort services. They receive traffic for a
specific site or address and forward it to the
cluster on that specific port.

LoadBalancer

When working with a cloud provider for
whom support exists within Kubernetes, a
Service of type LoadBalancer creates a load
balancer in that provider's infrastructure.
The exact details of how this happens differ
between providers, but all create the load
balancer asynchronously and configure it
to proxy the request to the corresponding
Pods via NodePort and ClusterIP Services
that it also creates.

In a later section, we explore Ingress
Controllers and how to use them to deliver
a load balancing solution for a cluster.

15JANUARY 2019

AN INTrOduCTION TO KuBErNETES NETWOrKINGDIVING DEEP INTO KUBERNETES NETWORKING

DNS
As we stated above, Pods are ephemeral, and because of this, their IP addresses are not reliable endpoints for communication.
Although Services solve this by providing a stable address in front of a group of Pods, consumers of the Service still want to avoid
using an IP address. Kubernetes solves this by using DNS for service discovery.

The default internal domain name for a cluster is cluster.local. When you create a Service, it assembles a subdomain of
namespace.svc.cluster.local (where namespace is the namespace in which the service is running) and sets its name as the
hostname. For example, if the service was named nginx and ran in the default namespace, consumers of the service would be able
to reach it as nginx.default.svc.cluster.local. If the service's IP changes, the hostname remains the same. There is no
interruption of service.

The default DNS provider for Kubernetes is KubeDNS, but it’s a pluggable component. Beginning with Kubernetes 1.11 CoreDNS is
available as an alternative. In addition to providing the same basic DNS functionality within the cluster, CoreDNS supports a wide
range of plugins to activate additional functionality.

NETWOrK POLICY
In an enterprise deployment of Kubernetes the cluster often supports multiple projects with different goals. Each of these projects
has different workloads, and each of these might require a different security policy.

Pods, by default, do not filter incoming traffic. There are no firewall rules for inter-Pod communication. Instead, this responsibility
falls to the NetworkPolicy resource, which uses a specification to define the network rules applied to a set of Pods.

The network policies are defined in Kubernetes, but the CNI plugins that support network policy implementation do the actual
configuration and processing. In a later section, we look at CNI plugins and how they work.

The image to the right shows a standard
three-tier application with a UI, a backend
service, and a database, all deployed
within a Kubernetes cluster.

Requests to the application arrive at the
web Pods, which then initiate a request to
the backend Pods for data. The backend
Pods process the request and perform
CRUD operations against the database
Pods.

If the cluster is not using a network
policy, any Pod can talk to any other
Pod. Nothing prevents the web Pods
from communicating directly with
the database Pods. If the security
requirements of the cluster dictate a
need for clear separation between tiers, a
network policy enforces it.

backend pod

db podweb pod

backend pod

backend pod

db podweb pod

16JANUARY 2019

AN INTrOduCTION TO KuBErNETES NETWOrKINGDIVING DEEP INTO KUBERNETES NETWORKING

The policy defined below states that the database Pods can only receive traffic from the Pods with the labels app=myapp
and role=backend. It also defines that the backend Pods can only receive traffic from Pods with the labels app=myapp and
role=web.

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: backend-access-ingress
spec:
 podSelector:
 matchLabels:
 app: myapp
 role: backend
 ingress:
 - from:
 - podSelector:
 matchLabels:
 app: myapp
 role: web
kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: db-access-ingress
spec:
 podSelector:
 matchLabels:
 app: myapp
 role: db
 ingress:
 - from:
 - podSelector:
 matchLabels:
 app: myapp
 role: backend

17JANUARY 2019

AN INTrOduCTION TO KuBErNETES NETWOrKINGDIVING DEEP INTO KUBERNETES NETWORKING

backend pod

db podweb pod

backend pod

backend pod

db podweb pod

With this network policy in place, Kubernetes blocks communication between the web
and database tiers.

How a Network Policy Works
In addition to the fields used by all Kubernetes manifests, the specification of the NetworkPolicy resource requires some extra
fields.

PODSELECTOR

This field tells Kubernetes how to find the Pods to which this
policy applies. Multiple network policies can select the same set
of Pods, and the ingress rules are applied sequentially. The field
is not optional, but if the manifest defines a key with no value, it
applies to all Pods in the namespace.

POLICYTYPES

This field defines the direction of network traffic to which the
rules apply. If missing, Kubernetes interprets the rules and
only applies them to ingress traffic unless egress rules also
appear in the rules list. This default interpretation simplifies the
manifest's definition by having it adapt to the rules defined later.

Because Kubernetes always defines an ingress policy if this field
is unset, a network policy for egress-only rules must explicitly
define the policyType of Egress.

18JANUARY 2019

AN INTrOduCTION TO KuBErNETES NETWOrKINGDIVING DEEP INTO KUBERNETES NETWORKING

EGRESS

Rules defined under this field apply
to egress traffic from the selected
Pods to destinations defined in
the rule. Destinations can be an
IP block (ipBlock), one or more
Pods (podSelector), one or more
namespaces (namespaceSelector), or
a combination of both podSelector and
nameSpaceSelector.

The following rule permits traffic from the Pods to any address in 10.0.0.0/24 and only on TCP

port 5978:

 egress:
 - to:
 - ipBlock:
 cidr: 10.0.0.0/24
 ports:
 - protocol: TCP
 port: 5978

The next rule permits outbound traffic for Pods with the labels app=myapp and role=backend

to any host on TCP or UDP port 53:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: db-egress-denyall
spec:
 podSelector:
 matchLabels:
 app: myapp
 role: backend
 policyTypes:
 - Egress
 egress:
 - ports:
 - port: 53
 protocol: UDP
 - port: 53
 protocol: TCP

Egress rules work best to limit a resource’s communication to the other resources on which it

relies. If those resources are in a specific block of IP addresses, use the ipBlock selector to

target them, specifying the appropriate ports:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: db-egress-denyall
spec:
 podSelector:
 matchLabels:
 app: myapp
 role: backend
 policyTypes:
 - Egress
 egress:
 - ports:
 - port: 53
 protocol: UDP
 - port: 53
 protocol: TCP
 - to:
 - ipBlock:
 cidr: 10.0.0.0/24
 ports:
 - protocol: TCP
 port: 3306

19JANUARY 2019

AN INTrOduCTION TO KuBErNETES NETWOrKINGDIVING DEEP INTO KUBERNETES NETWORKING

INGRESS

Rules listed in this field apply to traffic that is inbound to the
selected Pods. If the field is empty, all inbound traffic will be
blocked. The example below permits inbound access from any
address in 172.17.0.0/16 unless it’s within 172.17.1.0/24. It also
permits traffic from any Pod in the namespace myproject.

(Note the subtle distinction in how the rules are listed. Because
namespaceSelector is a separate item in the list, it matches
with an or value. Had namespaceSelector been listed as
an additional key in the first list item, it would permit traffic
that came from the specified ipBlock and was also from the
namespace myproject.)

ingress:
- from:
 - ipBlock:
 cidr: 172.17.0.0/16
 except:
 - 172.17.1.0/24
 - namespaceSelector:
 matchLabels:
 project: myproject
 - podSelector:
 matchLabels:
 role: frontend
 ports:
 - protocol: TCP
 port: 6379

The next policy permits access to the Pods labeled app=myapp
and role=web from all sources, external or internal.

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: web-allow-all-access
spec:
 podSelector:
 matchLabels:
 app: myapp
 role: web
 ingress:
 - from: []

Consider, however, that this allows traffic to any port on those
Pods. Even if no other ports are listening, the principle of least
privilege states that we only want to expose what we need to
expose for the services to work. The following modifications to
the NetworkPolicy take this rule into account by only allowing
inbound traffic to the ports where our Service is running.

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: web-allow-all-access-specific-port
spec:
 podSelector:
 matchLabels:
 app: myapp
 role: web
 ingress:
 - ports:
 - port: 8080
 from: []

20JANUARY 2019

AN INTrOduCTION TO KuBErNETES NETWOrKINGDIVING DEEP INTO KUBERNETES NETWORKING

Apart from opening incoming traffic on certain ports, you can
also enable all traffic from a set of Pods inside the cluster.
This enables a few trusted applications to reach out from the
application on all ports and is especially useful when workloads
in a cluster communicate with each other over many random
ports. The opening of traffic from certain Pods is achieved by
using labels as described in the policy below:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: web-allow-internal-port80
spec:
 podSelector:
 matchLabels:
 app: "myapp"
 role: "web"
 ingress:
 - ports:
 - port: 8080
 from:
 - podSelector:
 matchLabels:
 app: "mytestapp"
 role: "web-test-client"

Even if a Service listens on a different port than where the Pod’s containers listen, use the container ports in the network policy.
Ingress rules affect inter-Pod communication, and the policy does not know about the abstraction of the service.

CONTAINEr NETWOrKING INTErFACE
The Container Networking Interface (CNI) project is also under the governance of the CNCF. It provides a specification and a series
of libraries for writing plugins to configure network interfaces in Linux containers.

The specification requires that providers implement their plugin as a binary executable that the container engine invokes.
Kubernetes does this via the Kubelet process running on each node of the cluster.

The CNI specification expects the container runtime to create a new network namespace before invoking the CNI plugin. The
plugin is then responsible for connecting the container’s network with that of the host. It does this by creating the virtual Ethernet
devices that we discussed earlier.

Kubernetes and CNI

Kubernetes natively supports the CNI model. It gives its users the freedom to choose the network provider or product best suited
for their needs.

To use the CNI plugin, pass --network-plugin=cni to the Kubelet when launching it. If your environment is not using the default
configuration directory (/etc/cni/net.d), pass the correct configuration directory as a value to --cni-conf-dir. The Kubelet
looks for the CNI plugin binary at /opt/cni/bin, but you can specify an alternative location with --cni-bin-dir.

The CNI plugin provides IP address management for the Pods and builds routes for the virtual interfaces. To do this, the plugin
interfaces with an IPAM plugin that is also part of the CNI specification. The IPAM plugin must also be a single executable that the
CNI plugin consumes. The role of the IPAM plugin is to provide to the CNI plugin the gateway, IP subnet, and routes for the Pod.

21JANUARY 2019

NETWOrKING WITH FLANNELDIVING DEEP INTO KUBERNETES NETWORKING

ruNNING FLANNEL
WITH KuBErNETES
Flannel Pods roll out as a DaemonSet,
with one Pod assigned to each host.
To deploy it within Kubernetes, use the
kube-flannel.yaml manifest from
the Flannel repository on Github.

Once Flannel is running, it is not
possible to change the network
address space or the backend
communication format without cluster
downtime.

Network Type Backend Key features

Overlay VxLAN • Fast, but with no interhost encryption
• Suitable for private/secure networks

Overlay IPSec • Encrypts traffic between hosts
• Suitable when traffic traverses the Internet

Non Overlay Host-gw • Good performance
• Cloud agnostic

Non Overlay AWS VPC • Good performance
• Limited to Amazon’s cloud

FLANNEL BACKENdS
VxLAN
VxLAN is the simplest of the officially supported backends for Flannel. Encapsulation happens within the kernel, so there is no
additional overhead caused by moving data between the kernel and user space.

The VxLAN backend creates a Flannel interface on every host. When a container on one node wishes to send traffic to a different
node, the packet goes from the container to the bridge interface in the host’s network namespace. From there the bridge forwards
it to the Flannel interface because the kernel route table designates that this interface is the target for the non-local portion of the
overlay network. The Flannel network driver wraps the packet in a UDP packet and sends it to the target host.

Once it arrives at its destination, the process flows in reverse, with the Flannel driver on the destination host unwrapping the
packet, sending it to the bridge interface, and from there the packet finds its way into the overlay network and to the destination
Pod.

Networking with Flannel

Flannel is one of the most straightforward network providers for Kubernetes.
It operates at Layer 3 and offloads the actual packet forwarding to a backend
such as VxLAN or IPSec. It assigns a large network to all hosts in the cluster
and then assigns a portion of that network to each host. Routing between
containers on a host happens via the usual channels, and Flannel handles
routing between hosts using one of its available options.

Flannel uses etcd to store the map of what network is assigned to which host.
The target can be an external deployment of etcd or the one that Kubernetes
itself uses.

Flannel does not provide an implementation of the NetworkPolicy resource.

22JANUARY 2019

NETWOrKING WITH FLANNELDIVING DEEP INTO KUBERNETES NETWORKING

Host-gw
The Host-gw backend provides better
performance than VxLAN but requires
Layer 2 connectivity between hosts. It
operates by creating IP routes to subnets
via remote machine addresses.

Unlike VxLAN, no Flannel interface
is created when using this backend.
Instead, each node sends traffic directly
to the destination node where the remote
network is located.

This backend may require additional
network configuration if used in a cloud
provider where inter-host communication
uses virtual switches.

UDP
The UDP backend is insecure and should
only be used for debugging or if the kernel
does not support VxLAN.

172.17.0.254/16 10.42.1.254/24

172.17.0.254/16 10.42.1.254/24

172.17.0.254/16 10.42.1.1.32

docker0

IP table rules

cbr0

10.42.1.1.32

flannel.1

10.129.1.101/24

eth0

Node 1

172.17.0.254/16 10.42.1.254/24

172.17.0.254/16 10.42.1.254/24

172.17.0.254/16 10.42.1.1.32

docker0

IP table rules

cbr0

10.42.1.1.32

flannel.1

10.129.1.101/24

eth0

Node 2

172.17.0.254/16 10.42.1.254/24

172.17.0.254/16 10.42.1.254/24

172.17.0.254/16 10.42.1.1.32

docker0

IP table rules

cbr0

10.42.1.1.32

flannel.1

10.129.1.101/24

eth0

Node 3

172.17.0.254/16 10.42.1.254/24

172.17.0.254/16 10.42.1.254/24

172.17.0.254/16

docker0

IP table rules
10.42.1.1.32

flannel.1

10.129.1.101/24

eth0

Node 1

172.17.0.254/16 10.42.1.254/24

172.17.0.254/16 10.42.1.254/24

172.17.0.254/16

docker0

IP table rules
10.42.1.1.32

flannel.1

10.129.1.101/24

eth0

Node 2

172.17.0.254/16 10.42.1.254/24

172.17.0.254/16 10.42.1.254/24

172.17.0.254/16

docker0

IP table rules
10.42.1.1.32

flannel.1

10.129.1.101/24

eth0

Node 3

23JANUARY 2019

NETWOrKING WITH CALICODIVING DEEP INTO KUBERNETES NETWORKING

INSTALL CALICO WITH KuBErNETES
The latest instructions for installing Calico are present on the Calico Project website at https://docs.projectcalico.org. For this
section, you need a Kubernetes cluster running the Calico network backend.

When the cluster is ready, deploy a Pod running Nginx:

Networking with Calico

ArCHITECTurE
Calico operates at Layer 3 and assigns every workload a
routable IP address. It prefers to operate by using BGP without
an overlay network for the highest speed and efficiency, but in
scenarios where hosts cannot directly communicate with one
another, it can utilize an overlay solution such as VxLAN or IP-
in-IP.

Calico supports network policies for protecting workloads and
nodes from malicious activity or aberrant applications.

The Calico networking Pod contains a CNI container, a
container that runs an agent that tracks Pod deployments and
registers addresses and routes, and a daemon that announces
the IP and route information to the network via the Border
Gateway Protocol (BGP). The BGP daemons build a map of the
network that enables cross-host communication.

Calico requires a distributed and fault-tolerant key/value
datastore, and deployments often choose etcd to deliver this
component. Calico uses it to store metadata about routes,
virtual interfaces, and network policy objects. The Felix agent in
the calico-node Pod communicates with etcd to publish this

information. Calico can use a dedicated HA deployment of etcd,
or it can use the Kubernetes etcd datastore via the Kubernetes
API. Please see the Calico deployment documentation to
understand the functional restrictions that are present when
using the Kubernetes API for storing Calico data.

The final piece of a Calico deployment is the controller.
Although presented as a single object, it is a set of controllers
that run as a control loop within Kubernetes to manage policy,
workload endpoints, and node changes.

• The Policy Controller watches for changes in
the defined network policies and translates
them into Calico network policies.

• The Profile Controller watches for the addition
or removal of namespaces and programs
Calico objects called Profiles.

• Calico stores Pod information as workload
endpoints. The Workload Endpoint Controller
watches for updates to labels on the Pod and
updates the workload endpoints.

• The Node Controller loop watches for the
addition or removal of Kubernetes nodes and
updates the kvdb with the corresponding
data.

Users can manage Calico objects within the Kubernetes cluster via the command-line tool calicoctl. The tool’s only requirement
is that it can reach the Calico datastore.

https://docs.projectcalico.org

24JANUARY 2019

NETWOrKING WITH CALICODIVING DEEP INTO KUBERNETES NETWORKING

Note the IP address and the eth0 interface within the Pod:

In the output below, note that the routing table indicates that a local interface (cali106d129118f) handles traffic for the IP
address of the Pod. The calico-node Pod creates this interface and propagates the routes to other nodes in the cluster.

25JANUARY 2019

NETWOrKING WITH CALICODIVING DEEP INTO KUBERNETES NETWORKING

Kubernetes scheduled our Pod to run on k8s-n-1. If we look at the route table on the other two nodes, we see that each directs
192.168.2.0/24 to 70.0.80.117, which is the address of k8s-n-1.

uSING BGP FOr rOuTE ANNOuNCEMENTS

Full Mesh Topology
Each node where Calico runs behaves as a virtual router. The calico-node Pod runs the Felix agent and the BIRD BGP daemon.
BIRD is responsible for announcing the routes served by the host where it runs. Calico defaults to creating a full node-to-node
mesh topology where each node builds a peering session with every other node in the cluster. At a small scale this works well, but
as the cluster grows, we need to deploy a more efficient method for route propagation.

Using a BGP Route Reflector
We can achieve considerable improvements by utilizing a route reflector in our topology. This peer acts as a hub, and all other
nodes build peering relationships with it. When a node announces a route to the reflector, it propagates this route to all other nodes
with which it peers. It is not unusual to have two or more reflectors for fault tolerance or scale. Nodes connect to one or more of
them to distribute the load of maintaining and announcing routes evenly across the cluster.

Before we can use a route reflector, we first have to disable the default node-to-node BGP peering in the Calico configuration.

We do this by setting nodeToNodeMeshEnabled to false in the BGPConfiguration resource, as demonstrated below:

26JANUARY 2019

NETWOrKING WITH CALICODIVING DEEP INTO KUBERNETES NETWORKING

 apiVersion: projectcalico.org/v3
 kind: BGPConfiguration
 metadata:
 name: default
 spec:
 logSeverityScreen: Info
 nodeToNodeMeshEnabled: false
 asNumber: 63400

Next, use calicoctl to show the autonomous system number (ASN) for each node in the Kubernetes cluster.

calicoctl get nodes --output=wide

The calico-node Pods use one of two methods to build the peering relationship with external peers: global peering or per-node
peering.

calico/node pod

node

calico/node pod

Route Reflector

node

calico/node pod

node

calico/node pod

node

A single route reflector.

calico/node pod

node

calico/node pod

Route Reflector Route Reflector

node

calico/node pod

node

calico/node pod

node

Multiple route reflectors configured within a Kubernetes cluster.

27JANUARY 2019

NETWOrKING WITH CALICODIVING DEEP INTO KUBERNETES NETWORKING

GLOBAL BGP PEERING

If the network has a device that we want to have all of the nodes peer with, we can create a global BGPPeer resource within the
cluster. Doing it this way assures that we only have to create the configuration once for it to be applied correctly everywhere.

$ calicoctl create -f - << EOF
apiVersion: projectcalico.org/v3
kind: BGPPeer
metadata:
 name: bgppeer-global
 peerIP: <IP>
 scope: global
spec:
 asNumber: <ASN>
EOF

Use the ASN retrieved above and the IP of the external peer.

To remove a global BGP peer, use the calicoctl command:

$ calicoctl delete bgpPeer <IP> --scope=global

You can view the current list of BGP Peers with the following:

$ calicoctl get bgpPeer --scope=global

28JANUARY 2019

NETWOrKING WITH CALICODIVING DEEP INTO KUBERNETES NETWORKING

PER NODE BGP PEERING

To create a network topology where only a subset of nodes peers with certain external devices, we create a per-node BGPPeer
resource within the cluster.

$ cat << EOF | calicoctl create -f -
apiVersion: projectcalico.org/v3
kind: BGPPeer
metadata:
 name: bgppeer-2
 peerIP: <IP>
 Node: <NODENAME>
spec:
 asNumber: <ASN>
EOF

As before, use the ASN for the Calico network and the IP of the BGP peer. Specify the node to which this configuration applies.

You can remove a per-node BGP peer or view the current per-node configuration with calicoctl:

$ calicoctl delete bgpPeer <IP> --scope=node --node=<NODENAME>
$ calicoctl get bgpPeer --node=<NODENAME>

29JANUARY 2019

NETWOrKING WITH CALICODIVING DEEP INTO KUBERNETES NETWORKING

uSING IP-IN-IP
If we’re unable to use BGP, perhaps because we’re using a cloud provider or another environment where we have limited control
over the network or no permission to peer with other routers, Calico's IP-in-IP mode encapsulates packets before sending them to
other nodes.

To enable this mode, define the ipipMode field on the IPPool resource:

apiVersion: projectcalico.org/v3
kind: IPPool
metadata:
 name: project1IPPool
spec:
 cidr: 10.11.12.0/16
 ipipMode: CrossSubnet
 natOutgoing: true

After activating IP-in-IP, Calico wraps inter-Pod packets in a new packet with headers that indicate the source of the packet is the
host with the originating Pod, and the target of the packet is the host with the destination Pod. The Linux kernel performs this
encapsulation and then forwards the packet to the destination host where it is unwrapped and delivered to the destination Pod.

IP-in-IP has two modes of operation:

1. Always: This is the default mode if an IPPool resource is defined.
2. CrossSubnet: This only performs IP encapsulation for traffic which crosses subnet boundaries. Doing this

provides a performance benefit on networks where cluster members within separate Layer 2 boundaries have
routers between them because it performs encapsulation intelligently, only using it for the cross-subnet traffic.

For the CrossSubnet mode to work, each Calico node must use the IP address and subnet mask for the host. For more information
on this, see the Calico documentation for IP-in-IP.

30JANUARY 2019

COMBINING FLANNEL ANd CALICO (CANAL)DIVING DEEP INTO KUBERNETES NETWORKING

Combining Flannel and Calico (Canal)

For some time an effort to integrate Flannel's easy overlay networking engine and Calico's network policy enforcement ran
under the project name Canal. The maintainers deprecated it as a separate project, and instead, the Calico documentation
contains instructions on deploying Flannel and Calico together.

They only abandoned the name and status; the result remains the same. Flannel provides an overlay network using
one of its backends, and Calico provides granular access control to the running workloads with its network policy
implementation.

Calico CNI PluginOrchestrator Plugins

Calico Policy Enforcement

Calico & Flannel Networking

Flannel CNI Plugin

Policy Enforcement

BGP IPIP Native UDP VXLAN ...

Etcd

Any CNI enabled Orchestrator

Any Network Fabric

31JANUARY 2019

LOAd BALANCErS ANd INGrESS CONTrOLLErSDIVING DEEP INTO KUBERNETES NETWORKING

THE BENEFITS OF LOAd BALANCErS
A load balancer provides valuable features for any
deployment, whether it's running inside or outside of the
Kubernetes cluster. In addition to distributing load across
multiple backends, a load balancer can also move TLS
processing to a central location, route traffic based on the
requester's hardware or browser, the requested site, or a
path within the URL, or it can enable canary deployments
and zero-downtime upgrades.

Load Distribution
When client requests arrive, the load balancer directs them
across a pool of worker nodes commonly referred to as
backends. Because the load balancer presents itself as
the endpoint for the site, the clients don't know anything
about these backends. The load balancer tracks the health
and number of connections to each backend, and it works

according to its configured policy to evenly distribute the traffic. If a backend fails or becomes overloaded, the load balancer stops
sending traffic to it until it returns to a healthy state. This scenario enables horizontal scaling, where a site can scale capacity by
adding and removing backends.

Load Balancers and
Ingress Controllers

Up until now, we’ve focused on how to configure
networking and how the various providers work in
a Kubernetes cluster. While these systems define
and control communication within the cluster and
between its nodes, they do not, on their own, address
how traffic from outside of the cluster finds its way to
a destination or what part DNS plays in that process.
To understand the full picture, we need to explore how
Kubernetes approaches load balancing and DNS.

Host

HostLoad Balancer

Host

Request A

Request B

Request C

32JANUARY 2019

LOAd BALANCErS ANd INGrESS CONTrOLLErSDIVING DEEP INTO KUBERNETES NETWORKING

SSL/TLS Termination
The overhead of encrypting and decrypting data can impact the performance of a backend, so deployments frequently move this
work to the load balancer. Encrypted traffic lands on the load balancer, which decrypts it and forwards it to a backend. By operating
with a decrypted data stream, the load balancer can make informed decisions about how to route the data because it’s now able to
see more than the basic metadata present in the flow.

Routing By HTTP Host or Path
Organizations who run multiple applications frequently group them under the same logical namespace: their domain name. In this
scenario, a load balancer routes traffic based on parameters such as the requested host or site (the Host header), or by the path
requested in the URL.

www-backend

www-1

www-2

Neutral Component

CLI

user

Active

Load Balancer

1 Container

Active

Active

Active

Active

web.example.com/support web.example.com/career

web.example.com

Active

Letschat1

2 Containers

Letschat2

2 Containers

Mongo

1 Container

Nginx1

2 Containers

Nginx2

2 Containers

33JANUARY 2019

LOAd BALANCErS ANd INGrESS CONTrOLLErSDIVING DEEP INTO KUBERNETES NETWORKING

Upgrades and Feature Flags
When a load balancer receives an HTTP request, the
headers contain a wealth of extra information such
as the browser, the device, the operating system,
and more. Site maintainers can use this information
to route a subset of the traffic to a different
destination, perhaps to give an optimized experience
to a particular class of mobile device, to test a
new feature before rolling it out everywhere, or to
see the effect of different changes to the content
and determine which one has the more significant
impact.

Load balancers also provide a way to roll out
upgrades safely. Site administrators first deploy
the new version of the website or application to
a new set of backends and test it outside of the
standard rotation. When ready, they incrementally
add the new backends to the pool and rotate the
old backends out. The load balancers keep existing
traffic on the old backends and direct new traffic
to the new backends. Over time the sessions
connected to the old backends close, and only
new sessions remain. The old backends are then
terminated.

In the event of an unforeseen issue, the admins
can quickly rotate the old backends into the pool
and remove the new ones, returning the site to its
previous, working state.

Load Balancer

v1

v2

v1 v1

Load Balancer

v1 v1 v1

34JANUARY 2019

LOAd BALANCErS ANd INGrESS CONTrOLLErSDIVING DEEP INTO KUBERNETES NETWORKING

Load Balancer

Neutral

Component

Neutral

Component

Neutral

Component

Neutral

Component

Load Balancer

Neutral

Component

Neutral

Component

Neutral

Component

Neutral

Component

Load Balancer

Neutral

Component

Neutral

Component

Neutral

Component

Neutral

Component

Neutral

Component

Neutral

Component

Neutral

Component

Neutral

Component

Load Balancer

1

2

3

4

Before

After

35JANUARY 2019

LOAd BALANCErS ANd INGrESS CONTrOLLErSDIVING DEEP INTO KUBERNETES NETWORKING

LOAd BALANCING IN KuBErNETES
Kubernetes either can create internal load balancers using Kubernetes resources
such as Services and Ingresses, or it can deploy and manage external load
balancers such as those provided by AWS, GCP, F5, and others by deploying a
service of type LoadBalancer.

Internal Load Balancing
The easiest and simplest load balancer in Kubernetes is the Service. A Service
routes traffic via round-robin to one or more replicas running within the cluster.
The Service finds the replicas via a selector, which is a key/value pair that it looks
for in the Pod labels. Any Pod that matches the selector is a candidate for traffic,
and the Service sends each subsequent request to the next Pod in the list.

Services receive a stable IP address within the cluster, and if the cluster runs a
DNS component like KubeDNS or CoreDNS, it also receives a DNS name in the
format of {name}.{namespace}.svc.cluster.local. For example, applications
within the cluster that want to communicate with a Service named my-service
in the default namespace would send traffic to my-service.default.svc.
cluster.local.

Backend Pod 1
labels app-MyApp

port: 9376

ServiceIP
(IPTables)

Client

kube-proxy apiserver

Backend Pod 2
labels app-MyApp

port: 9376

Backend Pod 3
labels app-MyApp

port: 9376

Host

When traffic arrives at the Service, kube-proxy forwards it to the appropriate
backend.

The following manifest
creates a simple load
balancer:

kind: Service
apiVersion: v1
metadata:
 name: my-service
spec:
 selector:
 app: MyApp
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9376

36JANUARY 2019

LOAd BALANCErS ANd INGrESS CONTrOLLErSDIVING DEEP INTO KUBERNETES NETWORKING

External Load Balancing

LAYER 4

A load balancer that works at Layer 4 only routes traffic based on the TCP or UDP port. It does not look inside the packets or the
data stream to make any decisions.

A Kubernetes Service of the type LoadBalancer creates a Layer 4 load balancer outside of the cluster, but it only does this if the
cluster knows how. External load balancers require that the cluster use a supported cloud provider in its configuration and that the
configuration for the cloud provider includes the relevant access credentials when required.

Once created, the Status field of the service shows the address of the external load balancer.

Pod

GCP Node Load Balancer Kubernetes Service

Containers

Pod

Containers

Pod

Workload

GCP Node

Containers

Pod

Containers

Cloud Load Balancer

37JANUARY 2019

LOAd BALANCErS ANd INGrESS CONTrOLLErSDIVING DEEP INTO KUBERNETES NETWORKING

The following manifest creates an external Layer 4 load
balancer:

kind: Service
apiVersion: v1
metadata:
 name: my-service
spec:
 selector:
 app: MyApp
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9376
 clusterIP: 10.0.171.239
 loadBalancerIP: 78.11.24.19
 type: LoadBalancer
status:
 loadBalancer:
 ingress:
 - ip: 146.148.47.155

Because a Layer 4 load balancer does not look into the packet
stream, it only has basic capabilities. If a site runs multiple
applications, every one of them requires an external load
balancer. Escalating costs make that scenario inefficient.

Furthermore, because the LoadBalancer Service type
requires a supported external cloud provider, and because
Kubernetes only supports a small number of providers, many
sites instead choose to run a Layer 7 load balancer inside of the
cluster.

LAYER 7

The Kubernetes resource that handles
load balancing at Layer 7 is called
an Ingress, and the component that
creates Ingresses is known as an Ingress
Controller.

The Ingress Resource

The Ingress resource defines the rules
and routing for a particular application.
Any number of Ingresses can exist within
a cluster, each using a combination of
host, path, or other rules to send traffic to
a Service and then on to the Pods.

The following manifest defines an Ingress for the site foo.bar.com, sending /foo to
the s1 Service and /bar to the s2 Service:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: test
 annotations:
 nginx.ingress.Kubernetes.io/rewrite-target: /
spec:
 rules:
 - host: foo.bar.com
 http:
 paths:
 - path: /foo
 backend:
 serviceName: s1
 servicePort: 80
 - path: /bar
 backend:
 serviceName: s2
 servicePort: 80

38JANUARY 2019

LOAd BALANCErS ANd INGrESS CONTrOLLErSDIVING DEEP INTO KUBERNETES NETWORKING

The Ingress Controller

An Ingress Controller is a daemon, deployed as a Kubernetes pod, that listens for requests to create or modify Ingresses within the
cluster and converts the rules in the manifests into configuration directives for a load balancing component. That component is
either a software load balancer such as Nginx, HAProxy, or Traefik, or it’s an external load balancer such as an Amazon ALB or an F5
Big/IP.

When working with an external load balancer the Ingress Controller is a lightweight component that translates the Ingress
resource definitions from the cluster into API calls that configure the external piece.

The following diagram shows an Ingress Controller managing an Amazon ALB.

In the case of internal software load balancers, the Ingress Controller combines the management and load balancing components
into one piece. It uses the instructions in the Ingress resource to reconfigure itself.

EC2 Node

Website 1

Website Nodeport

Service

Chat Nodeport

Service

Website Nodeport

Service

Chat Nodeport

Service

Letschat 1

EC2 Node

Website 2 Letschat 2

userdomain.com/website userdomain.com/chat

Cloud Load Balancer

39JANUARY 2019

LOAd BALANCErS ANd INGrESS CONTrOLLErSDIVING DEEP INTO KUBERNETES NETWORKING

The following diagram shows a Nginx Ingress Controller working within a cluster.

Kubernetes uses annotations to control the behavior of the Ingress Controller. Each controller has a list of accepted annotations,
and their use activates advanced features such as canary deployments, default backends, timeouts, redirects, CORS configuration,
and more.

userdomain.com/website userdomain.com/chat userdomain.com/website userdomain.com/chat

Node

Website 1

Controller Load Balancer Controller Load Balancer

Letschat 1

Node

Website 2 Letschat 2

Nginx Nodeport Service Nginx Nodeport Service

Nginx Ingress Controller Nginx Ingress Controller

Nginx Daemonset

40JANUARY 2019

CONCLuSIONDIVING DEEP INTO KUBERNETES NETWORKING

Conclusion

Kubernetes takes a simple container engine like Docker and
elevates it to a level of usability appropriate for production
environments. What starts as a series of Netfilter rules on a
single host grows with Kubernetes to span multiple hosts or
even multiple disparate networks separated by geographical
boundaries. Kubernetes networking is powerful, and after
reading this book, you're ready to make informed decisions
about which provider to use, their capabilities, and how to
leverage Kubernetes resources to connect the outside world to
the applications running inside the cluster.

	_1fob9te
	_3znysh7
	_2s8eyo1
	_17dp8vu
	_3rdcrjn
	_26in1rg
	_lnxbz9
	_35nkun2
	_1ksv4uv
	_44sinio
	_2jxsxqh
	_z337ya
	_3j2qqm3
	_1y810tw
	_4i7ojhp
	_1ci93xb
	_3whwml4
	_2bn6wsx
	_qsh70q
	_3as4poj
	_1pxezwc
	_49x2ik5
	_2p2csry
	_147n2zr
	_23ckvvd
	_ihv636
	_32hioqz
	_1hmsyys
	_41mghml
	Introduction
	Goals of this book
	How this book is organized

	An Introduction to Networking with Docker
	Docker Networking Types
	Container-to-Container Communication
	Container Communication Between Hosts

	Interlude: Netfilter and iptables rules
	An Introduction to Kubernetes Networking
	Pod Networking
	Network Policy
	Container Networking Interface

	Networking with Flannel
	Running Flannel with Kubernetes
	Flannel Backends

	Networking with Calico
	Architecture
	Install Calico with Kubernetes
	Using BGP for Route Announcements
	Using IP-in-IP

	Combining Flannel and Calico (Canal)
	Load Balancers and Ingress Controllers
	The Benefits of Load Balancers
	Load Balancing in Kubernetes

	Conclusion

