Dlvmg Deep
into Kubernetes
Networking

AUTHORS

Adrian Goins <~
Alena Prokhorchyk
Murali Paluru

=3 RANCHER

DIVING DEEP INTO KUBERNETES NETWORKING TABLE OF CONTENTS

Introduction 1
Goals of This Book 1
How This Book is Organized 1
An Introduction to Networking with Docker 2
Docker Networking Types 2
Container-to-Container Communication 8
Container Communication Between Hosts 9
Interlude: Netfilter and iptables rules 10
An Introduction to Kubernetes Networking M
Pod Networking 12
Network Policy 15
Container Networking Interface 20
Networking with Flannel 21
Running Flannel with Kubernetes 21
Flannel Backends 21
Networking with Calico 23
Architecture 23
Install Calico with Kubernetes 23
Using BGP for Route Announcements 26
Using IP-in-IP 29
Combining Flannel and Calico (Canal) 30
Load Balancers and Ingress Controllers 31
The Benefits of Load Balancers 31
Load Balancing in Kubernetes 35

Conclusion 40

DIVING DEEP INTO KUBERNETES NETWORKING INTRODUCTION

This book is based on the
Networking Master Class online
meetup that is available on
YouTube.

This eBook covers Kubernetes
networking concepts, but we do
not intend for it to be a detailed
explanation of Kubernetes in its
entirety. For more information
on Kubernetes, we recommend
reading the Kubernetes
documentation or enrollingin a

Introduction

Kubernetes has evolved into a strategic platform for deploying and scaling
applications in data centers and the cloud. It provides built-in abstractions for
efficiently deploying, scaling, and managing applications. Kubernetes also addresses
concerns such as storage, networking, load balancing, and multi-cloud deployments.

Networking is a critical component for the success of a Kubernetes implementation.
Network components in a Kubernetes cluster control interaction at multiple layers,
from communication between containers running on different hosts to exposing
services to clients outside of a cluster. The requirements within each environment

are different, so before we choose which solution is the most appropriate, we have to
understand how networking works within Kubernetes and what benefits each solution

training program from a CNCF- provides.

certified training provider.

GOALS OF THIS BOOK

This book introduces various networking concepts related to Kubernetes that an operator, developer, or decision maker might
find useful. Networking is a complex topic and even more so when it comes to a distributed system like Kubernetes. It is essential
to understand the technology, the tooling, and the available choices. These choices affect an organization's ability to scale the
infrastructure and the applications running on top of it.

The reader is expected to have a basic understanding of containers, Kubernetes, and operating system fundamentals.

HOW THIS BOOK IS ORGANIZED

In this book, we cover Kubernetes networking from the basics to the advanced topics. We start by explaining Docker container
networking, as Docker is a fundamental component of Kubernetes. We then introduce Kubernetes networking, its unique model
and how it seamlessly scales. In doing so, we explain the abstractions that enable Kubernetes to communicate effectively between
applications. We touch upon the Container Network Interface (CNI) specification and how it relates to Kubernetes, and finally,

we do a deep dive into some of the more popular CNI plugins for Kubernetes such as Calico, Flannel and Canal. We discuss load
balancing, DNS and how to expose applications to the outside world.

https://www.youtube.com/watch?v=GXq3FS8M_kw

DIVING DEEP INTO KUBERNETES NETWORKING AN INTRODUCTION TO NETWORKING WITH DOCKER

An Introduction
to Networking
with Docker

Docker follows a unique
approach to networking

that is very different from

the Kubernetes approach.
Understanding how

Docker works help later in
understanding the Kubernetes
model, since Docker containers
are the fundamental unit of
deployment in Kubernetes.

DOCKER NETWORKING TYPES

When a Docker container launches, the Docker engine assigns it a network
interface with an IP address, a default gateway, and other components, such as a
routing table and DNS services. By default, all addresses come from the same pool,
and all containers on the same host can communicate with one another. We can
change this by defining the network to which the container should connect, either
by creating a custom user-defined network or by using a network provider plugin.

The network providers are pluggable using drivers. We connect a Docker container
to a particular network by using the --net switch when launching it.

The following command launches a container from the busybox image and joins it
to the host network. This container prints its IP address and then exits.

Docker offers five network types, each with a different capacity for communication
with other network entities.

A. Host Networking: The container shares the same IP address and network namespace as that of the host. Services
running inside of this container have the same network capabilities as services running directly on the host.

B. Bridge Networking: The container runs in a private network internal to the host. Communication is open to other
containers in the same network. Communication with services outside of the host goes through network address
translation (NAT) before exiting the host. (This is the default mode of networking when the --net option isn't specified)

C. Custom bridge network: This is the same as Bridge Networking but uses a bridge explicitly created for this (and other)
containers. An example of how to use this would be a container that runs on an exclusive "database" bridge network.
Another container can have an interface on the default bridge and the database bridge, enabling it to communicate with

both networks.

D. Container-defined Networking: A container can share the address and network configuration of another container. This
type enables process isolation between containers, where each container runs one service but where services can still
communicate with one another on the 1ocalhost address.

E. No networking: This option disables all networking for the container.

The host mode of networking allows the Docker container to share the same IP address

as that of the host and disables the network isolation otherwise provided by network

namespaces. The container’s network stack is mapped directly to the host's network

stack. All interfaces and addresses on the host are visible within the container, and all

communication possible to or from the host is possible to or from the container.

If you run the command ip addr on a host (or ifconfig -a if your host doesn't have the ip
command available), you will see information about the network interfaces. -
eth0

DIVING DEEP INTO KUBERNETES NETWORKING AN INTRODUCTION TO NETWORKING WITH DOCKER

% 1p address
1: lo: <LODPEBACK,UP,LOWER UP> mtu 65536 qdisc noqueus state UNKNOWN qlen 1888
link/loopback 80:00:00:80:08:00 brd 00:00:00:00:00:00
inet 127.8.8.173 scope host lo
valid 1ft forever preferred 1ft forever
inetd ::1/128 scope host
ualiﬂ Lft forever preferred 1Tt forever
2: ethB: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1588 qdisc pfifo fast state UP qlen 1688
link/sether 52:54:80:6b:21:9e brd Fr:Ff:ffeoffffaFff
inet 192.168.121.5/24 brd 192.168.121.255 scope global dynamic eth@
valid 1ft 2517zec preferred Lft 2517sec
inet6 feBA::5054:ff:fe6b:21%/64 scope link
valid 1ft forever preferred 1ft forever
3: ethl: <BROADCAST MULTICAST,UP,LOWER UP> mtu 1508 gdisc pfifo fast state UP glen 1868
Link/ether 52:54:08:94:94;6c brd ff;ff:ff:ffff: 11
inet 78.8.7E.56/16 brd 78.8.2535.255 scope global dynamic ethl
valid 1ft 158262s5ec preferred Lft 158262s5ec
ineth feB@: :5054:FF: fefd :D46C/64 scope link
valid 1ft forever preferred 1ft forever
4; dockerd: <ND-CARRIER,BROADCAST ,MULTICAST,UP= mtu 1500 gdisc nogueue state DOWN
link/ether 82 :42:d8:3e:db:dd brd ff:ff:FF:FF:FF:1FF
inet 172.17.8.1/16 brd 172,17.255.255 scepe global deckerd
valid 1ft forever preferred 1ft forever
inets feBd:42:d0ff: fede:dbdd/64 scope link
valid Lft forever preferred 1ft forever

If you run the same command from a container using host networking, you will see the same information.

% docker rum -it --netshost busybox ip addr
1: lo: <LODPEACK,UP,LOWER UP= mtu 65536 qdisc noqueus qlen 1868
link/loopback 80:00:00:66:00:00 brd 06:00:00:00:00:00
inet 127.8.8.1/3 scope host lo
valid 1ft forever preferred 1ft forever
ineth ::1/128 Scope host
valid_Lft forever preferred_Llft forever
2: eth@: <BROADCAST,MULTICAST,UP,LOWER UP= mtu 1580 gdisc pfifo fast qlen 1868
link/ether 52:54:80:6b:21:9e brd fr:Fff:ffaffzff:Fff
inet 192.168.121.5/24 brd 192.168.121.255 scope global dynamic eth@
valid 1ft 238Bsec preferred Lft 238Bsec
lneth fef::5054:ff:febb:21% /64 scope link
valid 1ft forever preferred 1ft forever
3: ethl; <BROADCAST,MULTICAST UP,LOWER UP= mtu 1568 gdisc pfifo fast glen 1688
Link/ether 52:54:08:04:94;6¢ brd 1 Ff ff:FFFF 44
inet 78.8.7E.56/16 brd 78.8.255.255 scope global dynamic ethl
valid 1ft 158133sec preferred Lft 1538133sec
inatf feBB::5054:FF: feld :D46c/64 scope Link
valid 1ft forever preferred 1ft forever
4: docker®: <NO-CARRIER,BROADCAST,MULTICAST, UP> mtu 1500 gdisc noqueus
link/ether 82:42:dB:3e:db:dd brd ff:ff:fF:Ff:FF:FFf
inet 172,17.8.1/106 brd 172,17.255.255 scope global docker@
valid 1ft forever preferred 1ft forever
inets feBd::42:d8ff:fele:dbdd/64 scope link
valid Lft forever preferred 1ft forever

DIVING DEEP INTO KUBERNETES NETWORKING AN INTRODUCTION TO NETWORKING WITH DOCKER

Bridge Networking

In a standard Docker installation, the
Docker daemon creates a bridge on the
host with the name of docker0. When a
container launches, Docker then creates Contadiner Container
avirtual ethernet device for it. This device
appears within the container as eth0 and
on the host with a name like vethxxx
where xxx is a unique identifier for the : :
interface. The vethxxx interface is added :
to the docker0 bridge, and this enables <
communication with other containers on

the same host that also use the default vethxxx Vethyyy
bridge.

docker0 bridge

To demonstrate using the default bridge,
run the following command on a host
with Docker installed. Since we are not
specifying the network - the container :
will connect to the default bridge when it M

launches. Ip tables

Runthe ip addr and ip route commands inside of the container. You will see the IP address of the container with the eth0
interface:

% docker run -it --«rm busybox /Sbin/sh
S # ip addr
1: lo: <LODPBACK,UP,LOWER UP> mtu 65536 qdisc noqueue glen 1666
Link/loopback 86:00:08:80:80:00 brd A0:08:00:80;00:08
ingt 127.8.9.1/8 scope host la
valid Lft forever preferred 1ft forever
168: ethédifll: <BROADCAST,MULTICAST,UR,LOWER UP,M-D0WN> mtu 1588 gdisc nogueus
Linkfether 82:42:ac:11:88:82 brd ff:ff:ff-ffoff:4f
inet 172.17.8.2/16 scope global eth@
valid 1ft forever preferred 1ft forever
S #Ap route show
default via 172.17.6.1 dev ethd
172.17.8.8/16 dev eth® scope link src 172.17.0.2
P

DIVING DEEP INTO KUBERNETES NETWORKING AN INTRODUCTION TO NETWORKING WITH DOCKER

In another terminal connected to the host, runthe ip addr command. You will see the corresponding interface created for the
container. In the image below it is named veth5dd2b68@i£9. Yours will be different.

£ ip addr | grep -A 58 wveth
18: wvethiodipb8@i19: <BROADCAST ,MULTICAST,.UF.LOWER UF= miu 19080 gdisc nogqueuve master dockerB state UF
linkfether Fe:5d:7a:5d:df:8c brd F: 0 F6:Ff:F0:-Ff link-netnsid B
ineth fel8: Fc5d:Talf:fe5ddfBc/6d scope link
wvalid 11t forever preferred Lt forever

Although Docker mapped the container IPs on the bridge, network services running inside of the container are not visible outside
of the host. To make them visible, the Docker Engine must be told when launching a container to map ports from that container to
ports on the host. This process is called publishing. For example, if you want to map port 80 of a container to port 8080 on the host,
then you would have to publish the port as shown in the following command:

By default, the Docker container can send traffic to any destination. The Docker daemon creates a rule within Netfilter that
modifies outbound packets and changes the source address to be the address of the host itself. The Netfilter configuration allows
inbound traffic via the rules that Docker creates when initially publishing the container's ports.

The output included below shows the Netfilter rules created by Docker when it publishes a container’s ports.

% docker ruen -p B888:80 --name web -d Aginx
b2 176e868bbT44chIBAFETodS23T0424bL 248 1dfBf I34bbPcaB 75221620743

3

% docker inspect web --Tﬂl’ﬂitﬂ'{{]iﬂﬂ Hetworksettings. IPAddressh}*
172, 17.0.2"

5

% wuwdo Lptables -L -8 nat -w
Chaln PREROUTIRG [palicy ACCEPT BB pachats, 088D Syten)

gete Byted Largetl prat opt = auk gures
13 TR DOCKER Wil .- may fy anywhars

Chickh IPUT qpalicy ACEFT 38 packsts, 33751 Bytes)
phla Dylik Laérgel pral opt is gul NAuF ol

Chain DUTPUT fpolicy ACCEST 58 packers, 3948 Bytes)

pils byles Larget prat apt s ut BT R
1] [- Bl e mEy any AnywhEre

Chaln PISTREOUTING d@ollcy AMCEFT 58 packents. IREE bymes|

pETS biptes Target prat apt 1= it BOHIFCE
L] & HASOGEEADE w11 Ay lgpchkerd 17F.17.8.0708
11 1117 RETURK akl &y any 192168, 137 8714
L] o EITIER (19 - ey any 193 1337 .8574
o O MATDOERRDD Ecp -- any arp 183,188 52T 0424
o © MAGIRCRADE wip -- any L 183, 188, U2, 0734
o O MASOUERADE all -- any By IBd. 180 33T, 0424
o O MASOWERADE Efp -- any iy 132,17.0.3

Chiin DOCKER (2 raferenddn]

puls Oyles Largel pral oft |& ut houre®
] i RET LK all deche il anp anpehe e
i L L g isacisrd sy e T

¥ wedo lptedles -L -2 THlGar -w
Chiis INPWT (pelicy WCCEFT TOE phcistd, LMK bytes)

PRy Bplad Targel prat opt La aull L
] o &CLEPT

wip wirbrd any anputere
¥ 0 ACLEFT RLp -+« wirbrd any [S Lol
¥ 8 MOLEFT wIp wirbrd sny ATt e
L] B ALLEFT Rcp wirbrild any angutane

Chivis FiWmARD (pelicy ACCERT & phcusia, 0 Byted)

Pl bypled Targil pral ol LA aull O LE
O DOIKEA - DLCLATIES Wkl - ady ey
0 RCLEFT all o=
8 DOLEER Bll
0 ALLFFT mLl

afpuhere
By dockerd sveehere

any durkeré avyshere
duckerll lgockerl anysfere

L L L B L L R N Y]
]
E
"~
-
=

0 ALLEPT 8Ll -- dofkerd dockerl ampuhece
all -- aAy wirte® anpetars
i ACLEPT all wirbrl any LE Q68 100 .4
0 SCLEFT all == wirbrd virbek anpebire
@ REJECT all <= 80y wirhid anpwtere
8 REJECT all wirbrid any anputane
Chils DUTPUT dgallcy ACCEPT TO7 packets, DA330 Bytwil
PRt Bpied Larget praE &8t LA aul hEEEE

L] 0 &EEEPT wp Ty virbl® anpebere
Chain BHRER 41 refersnces)
PRI bytes target Prof opt in [14 LOHT L

L] 0 ACLEFT LR - ldsgkard Socherd Gryetare

Chais DICHER-TSOLATION 41 refereaced)

Puls bplcs Targel prat opl La aull
&] mll == Ay Wiy

i

wTLE
anpuiere

NAT table within Netfilter

JANUARY 2019

dentanatioe
anputare

i] 3l B L

SEsLIAaELaR
ELIT. D B.0E

GEETIANE LR
ATt od-

DIVING DEEP INTO KUBERNETES NETWORKING AN INTRODUCTION TO NETWORKING WITH DOCKER

AQORTYME match dif-Type LOCAL

AD[ETYPE manch dr-Type LDDAL

hane sdorevs merant neid

2%, 58330, IS
1193 16, 132,80 14
1396 . 168, 133 .8/ 14
1183 160, 132 .85 14
1780783

dirslinat Lon
e
AfseE e

L LA RER
BrpehiEre
EsRErE
BRI
wvhern

Sk LAkl Han
By e

At
anywhere
Brpuiary
190 IBE, Q2T B/ 20
arypwhere
pyyhere
BwhEry
wvahprn

SiE Lnst han
arpebore

detination
7T 1702

S3E LAdl 1R
P]

mang parky: LOE-83E1%
mang gorke: 1024-8330%

Lop gl BLEs

LWL ELT R TSR CE e N H

i Ba1=demaln
Top ST dosadn
[- R T T
b dat -boad s

custate RELATED. ESTABLISHER

statale RELATED, ESTASL E5eED

rejechwith 1090 part enreachasle

reject with 1osg.port wnreschable

wlp A3 by

tep EpRrhtip

DIVING DEEP INTO KUBERNETES NETWORKING AN INTRODUCTION TO NETWORKING WITH DOCKER

There is no requirement to use the default bridge on the host; it's easy to create a new bridge network and attach containers to
it. This provides better isolation and interoperability between containers, and custom bridge networks have better security and
features than the default bridge.

« All containersin a custom bridge can communicate with the ports of other containers on that bridge. This means
that you do not need to publish the ports explicitly. It also ensures that the communication between them is
secure. Imagine an application in which a backend container and a database container need to communicate and
where we also want to make sure that no external entity can talk to the database. We do this with a custom bridge
network in which only the database container and the backend containers reside. You can explicitly expose the
backend API to the rest of the world using port publishing.

« The same is true with environment variables - environment variables in a bridge network are shared by all
containers on that bridge.

« Network configuration options such as MTU can differ between applications. By creating a bridge, you can
configure the network to best suit the applications connected to it.

To create a custom bridge network and two containers that use it, run the following commands:

A specialized case of custom networking is when a container joins the network of another container. This is similar to how a Pod
works in Kubernetes.

The following commands launch two containers that share the same network namespace and thus share the same IP address.
Services running on one container can talk to services running on the other via the 1ocalhost address.

This mode is useful when the container does not need to communicate with other containers or with the outside world. It is not
assigned an IP address, and it cannot publish any ports.

DIVING DEEP INTO KUBERNETES NETWORKING AN INTRODUCTION TO NETWORKING WITH DOCKER

CONTAINER-TO-CONTAINER COMMUNICATION

How do two containers on the same bridge network talk to one another?

PACKET a e

src: 172.17.0.6/16 Container
dest: 172.17.0.7

Container

o o™

docker0 bridge

In the above diagram, two containers running on the same host connect via the docker0 bridge. If 172.17.0.6 (on the left-hand
side) wants to send a request to 172.17.0.7 (the one on the right-hand side), the packets move as follows:

1. A packet leaves the container via eth0 and lands on the corresponding vethxxx interface.
2. The vethxxx interface connects to the vethyyy interface via the docker0 bridge.

3. The docker0 bridge forwards the packet to the vethyyy interface.

4. The packet moves to the etho interface within the destination container.

DIVING DEEP INTO KUBERNETES NETWORKING AN INTRODUCTION TO NETWORKING WITH DOCKER

We can see this in action by using ping and tepdump. Create two containers and inspect their network configuration with ip
addr and ip route.The default route for each containeris via the etho interface.

Ping one container from the other, and let the command run so that we can inspect the traffic. Run tepdump on the docker0
bridge on the host machine. You will see in the output that the traffic moves between the two containers via the docker0 bridge.

L1 CURE U S Y [TY PR T A S R TR B o EEF P LT o PR REBE=BBRY BedyBea SRIAFLS
L L
JSEipm JSEipm
11 T o DOERLE . O (0wl s #ly B350E ofjil Abguber gles B 11 T o DOERLE . O (0wl s #ly B350E ofjil Abguber gles B
11l 7 e B BB O Pt DD DR 11l 7 e B BB O Pt DD DR
i KPP 0. B4 prape Rpan e 1T KPP 0. B4 prape Rpan e
wElid Lft fereeer prefeered 191 forever wElid Lft fereeer prefeered 191 forever
15: wiREEL DY RS R TILRS] LW, LsEN F. 9 ali= atw D3 i fodeten d: IR RS T R TICAS] ., LSRN F -l mEw D3 Sdddf rederaen
B T T rar e T N PR R A N DT | Al Pl B 0BT 3 BEBE Bl DT T PP PRFE
il LFE LN 8. 3 poags giickal $ind il LFE, LR 8 08 poags gisdal $ind
wilid Lft fargesr preferred 10 lerewer wilid Lt farsesr preferred T4 lerewer
L L
S oressle S oressle
waiamln wia LFR P00 dew ankl waiamln wia LFR P00 dew ankl
ITF. T8 ekl ore #il soops Hisk wrc ITEIP.E.F ITE. T8 ekl ore #iel soops Nisk e ITEIT.E.B
[[

CONTAINER COMMUNICATION BETWEEN HOSTS

So far we've discussed scenarios in which

containers communicate within a single host. By o,

HPa . _ . . . Tepdamgp: verbeie ovtps? dupproided, oid -w aF -wv far full peotofal Becods
While interesting, real-world applications require lasnening on sacherd, LiRk Uppe ENLBME (E1bernet), coplure sioe J8I144 Byres
. . . . R W55 38481 T ARF, Asquety who-hae 17X 00,008 1R 172.0T.8.3, lengrh 3
communication between containers running on TE; M50, GMORT ERP, Aeply 17707, 0.7 pe-at O3 477ac; 1008088 [oul Urkngen), length 30
diff h L3 SRl 900000 EP L1T2.07.0.3 = 102, 17,0, 3: JCHF gchd recuell, Id 2304, jaq 3, lengbh &4
ifferent hosts. L0 S 0L BF IR .0 = 1P AT 0.7 10 coha reply, i JBEE, weq 0, 1eReTH B4
L% S 53 GRSERG EF EFI.AT.0.3 » IPEAF.D.5: 1CHE echy reguest. id I%bd, seq 5, Llengohn &4
LY 352 9N5R0Y TP BT, 07.0.% = Q7R LF. 0.2 JOMF @cha reply. o 208E. oeq L, Tengrh
_ . 13 M0, S TP 1T2,07.0.7 = 172.07,0,0: 1CM® scha request. id 3304, weq 3, length 84
Cross-host networking usually uses an overlay 13:99:43 G485 P F"g-?l?-ﬂ-;l > 172.47.0.2: 160 schy raply, 19 ;T’ a3, lenats 44
. . 13 S b SEUSE BF LTI NT.0.0 = IPE.LX.0.0: I0MP goha fecueal, 39 1584, deg 3, length B
network, which builds a mesh between hosts and L3:58: 54937827 OF 172,07.0.3 » ITE.LT.0.2: JOMP eche reply, 40 2384, seq 1, length 64
PR XS 55 253THS AP 1720700 = 17E. 07 0. 30 JOM% echg regudst. 10 2504, seq 2, Tengeh G4
employs a large block of IP addresses within that LT BV 3NN BP ITH07.0.0 » 17F.NT.0.77 ICMF poho reply, 00 7M. weq 4, length G
. . L6 ABEE EF 173 07.0.0 = 17E.17.0,3: ICHP sche recumit. id 1304, ieg 5, length &4
mesh. The network driver tracks which addresses LE: S8 GEEAFE 0P LT2 QT 0.3 & 1PF LT 0.2 ICHP svhs rieply, 0d 208, feq 5, lenglh B4
. 1358 57 . NFEN ARF, Regisest whasAas 1T 17000 F vell 192, LT. 8.3, Lenpih 2B
are on which host and shuttles packets between 139057 129111 ARP, Reply 172.07.8.7 in.ab 62idZ:acoll 082 [oui Unknewsi. Length 28
. . TR M AT WA IP 1720707 = 172.17.8.0: TCH® echo regeesi. 1d 7308, weq §, lengkh B4
the hosts as necessaryformter—contalner U3 S ST 00D BP 172, 07.0.0 = 17E.LT.0.8: JOWP gcha reply, S0 24, deq 0, length G4
L. LE: 5858 GFnetd BF LTI A7 0.7 = 1PE. AT, 0.8: 1CHF echa reguesl, id IS8, seq 7, lenglh B
communication. LF: 5058 9FSE5d EPF 17247 0.3 = 17E. AT 0.2 TCHP ok reply. §d 2MBE. seq 7. lengih &4

L3 5959, 8T8 BF IT2,07.0,7 > 170 17.0.31 109 edha regeest. 1d 7364, seq 8, Length o4
L B39, 9FHE IP 372,07.0.0 » 373.17.0.37 ICRF esho reply, 30 28, weg B, length &4

Overlay networks can be encrypted or

unencrypted. Unencrypted networks

are acceptable for environments in which all of the hosts are within the same LAN, but because overlay networks enable
communication between hosts across the Internet, consider the security requirements when choosing a network driver. If the
packets traverse a network that you don't control, encryption is a better choice.

The overlay network functionality built into Docker is called Swarm. When you connect a host to a swarm, the Docker engine on
each host handles communication and routing between the hosts.

Other overlay networks exist, such as IPVLAN, VxLAN, and MACVLAN. More solutions are available for Kubernetes.

For more information on pure-Docker networking implementations for cross-host networking (including Swarm mode and
libnetwork), please refer to the documentation available at the Docker website.

https://docs.docker.com

DIVING DEEP INTO KUBERNETES NETWORKING INTERLUDE: NETFILTER AND IPTABLES RULES

| nter' ude Netﬁ |ter q nd Rules in the Filter table control if a packet is allowed or

. denied. Packets which are allowed are forwarded whereas
|pt0 bles ru |eS packets which are denied are either rejected or silently
dropped.

In the earlier section on Docker networking, we looked
at how Docker handles communication between

containers. On a Linux host, the component which These rules control network address translation. They
handles this s called Netfilter, or more commonly by the modify the source or destination address for the packet,
command used to configure it: iptables. changing how the kernel routes the packet.

Netfilter manages the rules that define network

communication for the Linux kernel. These rules permit,

deny, route, modify, and forward packets. It organizes The headers of packets which go through this table are

these rules into tables according to their purpose. altered, changing the way the packet behaves. Netfilter
might shorten the TTL, redirect it to a different address, or
change the number of network hops.

This table marks packets to bypass the iptables stateful connection tracking.

This table sets the SELinux security context marks on packets. Setting the marks affects how SELinux (or systems that can
interpret SELinux security contexts) handle the packets. The rules in this table set marks on a per-packet or per-connection basis.

Netfilter organizes the rules in a table into chains. Chains are the means by which Netfilter hooks in the kernel intercept packets as
they move through processing. Packets flow through one or more chains and exit when they match arule.

Arule defines a set of conditions, and if the packet matches those conditions, an action is taken. The universe of actions is diverse,
but examples include:

« Block all connections originating from a specific IP address.
« Block connections to a network interface.

o Allow all HTTP/HTTPS connections.

« Block connections to specific ports.

The action that a rule takes is called a target, and represents the decision to accept, drop, or forward the packet.

The system comes with five default chains that match different phases of a packet'’s journey through processing: PREROUTING,
INPUT, FORWARD, OUTPUT, and POSTROUTING. Users and programs may create additional chains and inject rules into the system
chains to forward packets to a custom chain for continued processing. This architecture allows the Netfilter configuration to follow
alogical structure, with chains representing groups of related rules.

Docker creates several chains, and it is the actions of these chains that handle communication between containers, the host, and
the outside world.

DIVING DEEP INTO KUBERNETES NETWORKING AN INTRODUCTION TO KUBERNETES NETWORKING

An Introduction to
Kubernetes Networking

Kubernetes networking builds on top of the
Docker and Netfilter constructs to tie multiple
components together into applications.
Kubernetes resources have specific names and
capabilities, and we want to understand those
before exploring their inner workings.

Pods

The smallest unit of deployment in a Kubernetes
clusteris the Pod, and all of the constructs related to
scheduling and orchestration assist in the deployment
and management of Pods.

In the simplest definition, a Pod encapsulates one or
more containers. Containers in the same Pod always
run on the same host. They share resources such as the
network namespace and storage.

Each Pod has a routable IP address assigned to it, not
to the containers running within it. Having a shared
network space for all containers means that the
containers inside can communicate with one another

over the localhost address, a feature not present in traditional Docker networking.

The most common use of a Pod is to run a single container. Situations where different processes work on the same

shared resource, such as content in a storage volume, benefit from having multiple containers in a single Pod. Some

projects inject containers into running Pods to deliver a service. An example of this is the Istio service mesh, which

uses this injected container as a proxy for all communication.

Because a Pod is the basic unit of deployment, we can map it to a single instance of an application. For example, a
three-tier application that runs a user interface (Ul), a backend, and a database would model the deployment of the
application on Kubernetes with three Pods. If one tier of the application needed to scale, the number of Pods in that

tier could scale accordingly.

Content Manager

File Puller

|

Consumers

IIIIIIIIHHHE%HHHHIIIIIII

Volume

Pod

DIVING DEEP INTO KUBERNETES NETWORKING AN INTRODUCTION TO KUBERNETES NETWORKING

Production applications with users

run more than one instance of the
application. This enables fault tolerance,
where if one instance goes down, another
handles the traffic so that users don't
experience a disruption to the service.

In a traditional model that doesn't use
Kubernetes, these types of deployments
require that an external person or
software monitors the application and
acts accordingly.

Kubernetes recognizes that an
application might have unique
requirements. Does it need to run on
every host? Does it need to handle
state to avoid data corruption? Can all
of its pieces run anywhere, or do they
need special scheduling consideration?
To accommodate those situations
where a default structure won't give
the best results, Kubernetes provides
abstractions for different workload types.

POD NETWORKING

REPLICASET

The ReplicaSet maintains the desired
number of copies of a Pod running
within the cluster. If a Pod or the host
on which it's running fails, Kubernetes
launches a replacement. In all cases,
Kubernetes works to maintain the
desired state of the ReplicaSet.

DEPLOYMENT

A Deployment manages a ReplicaSet.
Althoughit's possible to launch

a ReplicaSet directly or to use a
ReplicationController, the use of a
Deployment gives more control over
the rollout strategies of the Pods that
the ReplicaSet controller manages.
By defining the desired states of Pods
through a Deployment, users can
perform updates to the image running
within the containers and maintain the
ability to perform rollbacks.

DAEMONSET

A DaemonSet runs one copy of the

Pod on each node in the Kubernetes
cluster. This workload model provides
the flexibility to run daemon processes
such as log management, monitoring,
storage providers, or network providers
that handle Pod networking for the
cluster.

STATEFULSET

A StatefulSet controller ensures that
the Pods it manages have durable
storage and persistent identity.
StatefulSets are appropriate for
situations where Pods have a similar
definition but need a unique identity,
ordered deployment and scaling,
and storage that persists across Pod
rescheduling.

The Pod is the smallest unit in Kubernetes, so it is essential to first understand Kubernetes networking in the context of

communication between Pods. Because a Pod can hold more than one container, we can start with a look at how communication

happens between containers in a Pod. Although Kubernetes can use Docker for the underlying container runtime, its approach to

networking differs slightly and imposes some basic principles:

e Any Pod can communicate with any other Pod without the use of network address translation (NAT). To facilitate
this, Kubernetes assigns each Pod an IP address that is routable within the cluster.

¢ A node can communicate with a Pod without the use of NAT.

« APod'sawareness of its address is the same as how other resources see the address. The host's address doesn't

mask it.

These principles give a unique and first-class identity to every Pod in the cluster. Because of this, the networking model is more

straightforward and does not need to include port mapping for the running container workloads. By keeping the model simple,

migrations into a Kubernetes cluster require fewer changes to the container and how it communicates.

DIVING DEEP INTO KUBERNETES NETWORKING AN INTRODUCTION TO KUBERNETES NETWORKING

The Pause Container

A piece of infrastructure that enables many networking features in Kubernetes is known as the pause container. This container
runs alongside the containers defined in a Pod and is responsible for providing the network namespace that the other containers
share. It is analogous to joining the network of another container that we described in the User Defined Network section above.

The pause container was initially designed to act as the init process within a PID namespace shared by all containers in the Pod. It
performed the function of reaping zombie processes when a container died. PID namespace sharing is now disabled by default, so
unless it has been explicitly enabled in the kubelet, all containers run their process as PID 1.

If we launch a Pod running Nginx, we can inspect the Docker container running within the Pod.

4 kubectl run BGLAK -« IEsgEanginx

deplaoyeant , Ajps “ngaax” £reated

% Mubectl per pods b WE2E | grep ngins

nginz-Bafaisfafd- Fodmh 141 Aunning @ a4 192,188, 2, 145 kEy-n-d
E)

When we do so, we see that the container does not have the network settings provided to it. The pause container which runs as
part of the Pod is the one which gives the networking constructs to the Pod.

Note: Run the commands below on the host where the nginx Pod is scheduled.

& gocker g3 | grep nginx

FRAEA:Talc 15 nginz “nginz -g ‘dasson Sf.° I} misutes ago

Up 18 minutes EEE ngiaa_sgine - GAT4RTIETD-Jodan Spfault_disal
T =554 11e8 - 50 ad 525400607 19+ B

b2cIZTFeldll k5. gor. lofpause:d.d " Spause” 11 alrubes dgo

I 11 minutes ks POD sgimx- BAFAO7FEEL- Jednh defaull diba e

G-cBid-11ed -alad-STRAE0GRII0e O
-

& docker inspect TREAACTRfClS - -Tormat="{{json .MEtworkSettirgsi)’
{*Bridge® ;=" “Sasdbax D™ ** “HairpinMade Tal e, "Lisklocal [PwElddress®: *" "LinkLacal 1P
BPreficlon=: b, “Paree”™ ([}, " Sandboxkey® o= “Socondary IPASO ros et 2l Sl ondar y TPvELIdP
easen inull, "EndpointI0" ", "Gateway™ o * ", "Global IPvGhddrass™ 2" " "ilobal IPcEPrel iulen™C
JIPAddress” " "IPPreflalen ™10, " IPviGet wuay™ " "Mackddress™ ", "Hetworks 1 {}]

5

& dotker inspect LIZcI2Trefary - -format="{{jSon .NEEwOrkSEttings)]’
{*Eridge® ;=" “Sasdbax 10" *ca Tl 2elbif 19 TAINS PSORTINTEAT ¢ 60 2abbl 1 1 Falidd SeBbEA A6 be
493", “HalrplaMode ™ : Talsg, “LEakLocalIPvEdddrgss " °, "LinkLocal DvbPeal Laben® 0, “Ports "=
b, Sandbnukey® o Svarsrun)docker netas e Tab 280681 ", "SecondaryIPLadre e " tnul], "Secces
arylPvbaddresses " tnull, "Endeolnt 10" ;" ", "Galeway™ o ™", "Global IFvEAaddrEss ™ " °. "Global IFWEF
refialen” (0, "[PAsdreds = =" T IPPraf ixies 0, " IPvhGA T eeay™ =" "Hachddrass” ;" " "Hetwarks™
{ e {“TPFAMCoA T ig™ ihull “Links™ :null, Al lages® rul L, “Hetwor i 0" ; = Todd s Shab 3] 405064 TE
9853 14Tabbbldbe o BETEDaGIS3aTED 1 0T O Led 3T TECE", "Enapaint ID” " 242 lacBad i3 c 101 30 defannd
AL T eandd f 2055 calbGOAG6IaPE12 100905 " , "oatewayt ot "IPAddresst ", *IPPref ixlen® 0, "IF
'rE-H tmﬂ: = "lobal IFvBAdd ress™ ", "Clobal IPvEPreFixLen™ B "Fachddress " " "Dr lvertpe
L] [F]

%

DIVING DEEP INTO KUBERNETES NETWORKING AN INTRODUCTION TO KUBERNETES NETWORKING

Kubernetes follows the IP-per-Pod model where it assigns a
routable IP address to the Pod. The containers within the Pod share
the same network space and communicate with one another over
localhost. Like processes running on a host, two containers
cannot each use the same network port, but we can work around

this by changing the manifest.

Because it assigns routable IP addresses to each Pod, and because
it requires that all resources see the address of a Pod the same way,
Kubernetes assumes that all Pods communicate with one another
via their assigned addresses. Doing so removes the need for an
external service discovery mechanism.

Pods are ephemeral. The services that they provide may be critical, but because Kubernetes can terminate Pods at any time, they are

unreliable endpoints for direct communication. For example, the number of Pods in a ReplicaSet might change as the Deployment scales

it up or down to accommodate changes in load on the application, and it is unrealistic to expect every client to track these changes while

communicating with the Pods. Instead, Kubernetes offers the Service resource, which provides a stable IP address and balances traffic

across all of the Pods behind it. This abstraction brings stability and a reliable mechanism for communication between microservices.

Services which sit in front of Pods use a selector and labels to find the Pods they manage. All Pods with a label that matches the selector

receive traffic through the Service. Like a traditional load balancer, the service can expose the Pod functionality at any port, irrespective of

the portin use by the Pods themselves.

KUBE-PROXY

The kube-proxy daemon that runs on all nodes of the cluster allows the Service to map traffic from one port to another.

This component configures the Netfilter rules on all of the nodes according to the Service's definition in the API server. From Kubernetes

1.9 onward it uses the netlink interface to create IPVS rules. These rules direct traffic to the appropriate Pod.

KUBERNETES SERVICE TYPES

A service definition specifies the type of Service to deploy, with each type of Service having a different set of capabilities.

ClusterlP

This type of Service is the default and
exists on an IP that is only visible within
the cluster. It enables cluster resources

to reach one another via a known address
while maintaining the security boundaries
of the cluster itself. Forexample, a
database used by a backend application
does not need to be visible outside of the
cluster, so using a service of type ClusterlP
is appropriate. The backend application
would expose an API for interacting with
records in the database, and a frontend
application or remote clients would
consume that API.

NodePort

A Service of type NodePort exposes the
same port on every node of the cluster. The
range of available portsis a cluster-level
configuration item, and the Service can
either choose one of the ports at random
or have one designated in its configuration.
This type of Service automatically creates
a ClusterlP Service asits target, and the
ClusterlP Service routes traffic to the Pods.

External load balancers frequently use
NodePort services. They receive traffic for a
specific site or address and forward it to the
cluster on that specific port.

LoadBalancer

When working with a cloud provider for
whom support exists within Kubernetes, a
Service of type LoadBalancer creates a load
balancerin that provider's infrastructure.
The exact details of how this happens differ
between providers, but all create the load
balancer asynchronously and configure it
to proxy the request to the corresponding
Pods via NodePort and ClusterIP Services
that it also creates.

In a later section, we explore Ingress
Controllers and how to use them to deliver
aload balancing solution for a cluster.

DIVING DEEP INTO KUBERNETES NETWORKING AN INTRODUCTION TO KUBERNETES NETWORKING

As we stated above, Pods are ephemeral, and because of this, their IP addresses are not reliable endpoints for communication.
Although Services solve this by providing a stable address in front of a group of Pods, consumers of the Service still want to avoid
using an IP address. Kubernetes solves this by using DNS for service discovery.

The default internal domain name for a cluster is cluster.local. When you create a Service, it assembles a subdomain of
namespace.svc.cluster.local (Where namespace is the namespace in which the service is running) and sets its name as the
hostname. For example, if the service was named nginx and ran in the default namespace, consumers of the service would be able
toreachitasnginx.default.svc.cluster.local.If the service's IP changes, the hostname remains the same. There is no
interruption of service.

The default DNS provider for Kubernetes is KubeDNS, but it's a pluggable component. Beginning with Kubernetes 1.11 CoreDNS is
available as an alternative. In addition to providing the same basic DNS functionality within the cluster, CoreDNS supports a wide
range of plugins to activate additional functionality.

NETWORK POLICY

In an enterprise deployment of Kubernetes the cluster often supports multiple projects with different goals. Each of these projects
has different workloads, and each of these might require a different security policy.

Pods, by default, do not filter incoming traffic. There are no firewall rules for inter-Pod communication. Instead, this responsibility
falls to the NetworkPolicy resource, which uses a specification to define the network rules applied to a set of Pods.

The network policies are defined in Kubernetes, but the CNI plugins that support network policy implementation do the actual
configuration and processing. In a later section, we look at CNI plugins and how they work.

The image to the right shows a standard
three-tier application with a Ul, a backend
service, and a database, all deployed
within a Kubernetes cluster.

Requests to the application arrive at the
web Pods, which then initiate a request to
the backend Pods for data. The backend
Pods process the request and perform

CRUD operations against the database > """""" ;
Pods. ' '

If the clusteris not usinga network 0+
policy, any Pod can talk to any other RN
Pod. Nothing prevents the web Pods :

from communicating directly with NN P S é db pod

the database Pods. If the security

requirements of the cluster dictate a
need for clear separation between tiers, a

network policy enforces it.

DIVING DEEP INTO KUBERNETES NETWORKING AN INTRODUCTION TO KUBERNETES NETWORKING

The policy defined below states that the database Pods can only receive traffic from the Pods with the labels app=myapp

and role=backend. It also defines that the backend Pods can only receive traffic from Pods with the labels app=myapp and
role=web.

DIVING DEEP INTO KUBERNETES NETWORKING AN INTRODUCTION TO KUBERNETES NETWORKING

backend pod

With this network policy in place, Kubernetes blocks communication between the web

and database tiers.

How a Network Policy Works

In addition to the fields used by all Kubernetes manifests, the specification of the NetworkPolicy resource requires some extra
fields.

PODSELECTOR POLICYTYPES

This field tells Kubernetes how to find the Pods to which this This field defines the direction of network traffic to which the
policy applies. Multiple network policies can select the same set rules apply. If missing, Kubernetes interprets the rules and

of Pods, and the ingress rules are applied sequentially. The field only applies them to ingress traffic unless egress rules also

is not optional, but if the manifest defines a key with no value, it ~ appearin the rules list. This default interpretation simplifies the
applies to all Pods in the namespace. manifest's definition by having it adapt to the rules defined later.

Because Kubernetes always defines an ingress policy if this field
is unset, a network policy for egress-only rules must explicitly
define the policyType of Egress.

DIVING DEEP INTO KUBERNETES NETWORKING AN INTRODUCTION TO KUBERNETES NETWORKING

The following rule permits traffic from the Pods to any address in 10.0.0.0/24 and only on TCP
port 5978:

EGRESS

Rules defined under this field apply

to egress traffic from the selected

Pods to destinations defined in

the rule. Destinations can be an

IP block (ipBlock), one or more

Pods (podselector), one or more
namespaces (namespaceSelector), or

a combination of both podselector and

nameSpaceSelector.

The next rule permits outbound traffic for Pods with the labels app=myapp and role=backend
to any host on TCP or UDP port 53:

Egress rules work best to limit a resource’s communication to the other resources on which it
relies. If those resources are in a specific block of IP addresses, use the ipBlock selector to

target them, specifying the appropriate ports:

DIVING DEEP INTO KUBERNETES NETWORKING

AN INTRODUCTION TO KUBERNETES NETWORKING

INGRESS

Rules listed in this field apply to traffic that is inbound to the
selected Pods. If the field is empty, all inbound traffic will be
blocked. The example below permits inbound access from any
addressin 172.17.0.0/16 unless it's within 172.17.1.0/24. It also
permits traffic from any Pod in the namespace myproject.

(Note the subtle distinction in how the rules are listed. Because
namespaceSelector is a separate itemin the list, it matches
with an orvalue. Had namespaceSelector been listed as

an additional key in the first list item, it would permit traffic
that came from the specified ipBlock and was also from the
namespace myproject.)

The next policy permits access to the Pods labeled app=myapp
and role=web from all sources, external orinternal.

Consider, however, that this allows traffic to any port on those
Pods. Even if no other ports are listening, the principle of least
privilege states that we only want to expose what we need to
expose for the services to work. The following modifications to
the NetworkPolicy take this rule into account by only allowing
inbound traffic to the ports where our Service is running.

DIVING DEEP INTO KUBERNETES NETWORKING AN INTRODUCTION TO KUBERNETES NETWORKING

Apart from opening incoming traffic on certain ports, you can
also enable all traffic from a set of Pods inside the cluster.

This enables a few trusted applications to reach out from the
application on all ports and is especially useful when workloads
in a cluster communicate with each other over many random
ports. The opening of traffic from certain Pods is achieved by
using labels as described in the policy below:

Even if a Service listens on a different port than where the Pod's containers listen, use the container ports in the network policy.
Ingress rules affect inter-Pod communication, and the policy does not know about the abstraction of the service.

CONTAINER NETWORKING INTERFACE

The Container Networking Interface (CNI) project is also under the governance of the CNCF. It provides a specification and a series
of libraries for writing plugins to configure network interfaces in Linux containers.

The specification requires that providers implement their plugin as a binary executable that the container engine invokes.
Kubernetes does this via the Kubelet process running on each node of the cluster.

The CNI specification expects the container runtime to create a new network namespace before invoking the CNI plugin. The
plugin is then responsible for connecting the container’s network with that of the host. It does this by creating the virtual Ethernet
devices that we discussed earlier.

Kubernetes natively supports the CNI model. It gives its users the freedom to choose the network provider or product best suited
for their needs.

To use the CNI plugin, pass --network-plugin=cni to the Kubelet when launching it. If your environment is not using the default
configuration directory (/etc/cni/net.d), pass the correct configuration directory as a value to --cni-conf-dir. The Kubelet
looks for the CNI plugin binary at /opt/cni/bin, but you can specify an alternative location with --cni-bin-dir.

The CNI plugin provides IP address management for the Pods and builds routes for the virtual interfaces. To do this, the plugin
interfaces with an IPAM plugin that is also part of the CNI specification. The IPAM plugin must also be a single executable that the
CNI plugin consumes. The role of the IPAM plugin is to provide to the CNI plugin the gateway, IP subnet, and routes for the Pod.

DIVING DEEP INTO KUBERNETES NETWORKING NETWORKING WITH FLANNEL

Networking with Flannel

Flannel is one of the most straightforward network providers for Kubernetes.
It operates at Layer 3 and offloads the actual packet forwarding to a backend
such as VxLAN or IPSec. It assigns a large network to all hosts in the cluster

RUNNING FLANNEL
WITH KUBERNETES

Flannel Pods roll out as a DaemonSet,
with one Pod assigned to each host.
To deploy it within Kubernetes, use the
kube-flannel.yaml manifest from
the Flannel repository on Github.

and then assigns a portion of that network to each host. Routing between

containers on a host happens via the usual channels, and Flannel handles
routing between hosts using one of its available options.

Flannel uses etcd to store the map of what network is assigned to which host.
The target can be an external deployment of etcd or the one that Kubernetes

itself uses.

Once Flannelis running, it is not
possible to change the network
address space or the backend
communication format without cluster
downtime.

Flannel does not provide an implementation of the NetworkPolicy resource.

Network Type
Overlay

Overlay

Non Overlay

Non Overlay

Backend
VXLAN

IPSec

Host-gw

AWS VPC

FLANNEL BACKENDS

Key features

Fast, but with no interhost encryption
Suitable for private/secure networks

Encrypts traffic between hosts
Suitable when traffic traverses the Internet

Good performance
Cloud agnostic

Good performance
Limited to Amazon’s cloud

VXLAN is the simplest of the officially supported backends for Flannel. Encapsulation happens within the kernel, so there is no

additional overhead caused by moving data between the kernel and user space.

The VXLAN backend creates a Flannel interface on every host. When a container on one node wishes to send traffic to a different

node, the packet goes from the container to the bridge interface in the host’'s network namespace. From there the bridge forwards

it to the Flannel interface because the kernel route table designates that this interface is the target for the non-local portion of the

overlay network. The Flannel network driver wraps the packet in a UDP packet and sends it to the target host.

Once it arrives at its destination, the process flows in reverse, with the Flannel driver on the destination host unwrapping the

packet, sending it to the bridge interface, and from there the packet finds its way into the overlay network and to the destination

Pod.

DIVING DEEP INTO KUBERNETES NETWORKING NETWORKING WITH FLANNEL

H OSt - gw 172.17.0.254/16 10.42.1.254/24 172.17.0.254/16 10.42.1.254/24 172.17.0.254/16 10.42.1.254/24

The Host-gw backend provides better

performance than VxLAN but requires 172.17.0.254/16 10.42.1.254/24 172.17.0.254/16 10.42.1.254/24 172.17.0.254/16 10.42.1.254/24
Layer 2 connectivity between hosts. It

operates by creating IP routes to subnets

. h. dd docker0 cbr0 docker0 cbro docker0 cbro
viaremote machine a resses. 172.17.0.254/16 10.42.1.1.32 172.17.0.254/16 10.42.1.1.32 172.17.0.254/16 10.42.1.1.32
Unlike VXLAN, no Flannel interface
H H : flannel.l flannel.l flannel.l
is created when using this backend. IP table rules 10421192 IP table rules 10421132 IP table rules 10421132
Instead, each node sends traffic directly
to the destination node where the remote
network is located. etho etho etho

10.129.1.101/24 10.129.1.101/24 10.129.1.101/24
T oco1
This backend may require additional
network configuration if used in a cloud
provider where inter-host communication
uses virtual switches.
U DP 172.17.0.254/16 10.42.1.254/24 172.17.0.254/16 10.42.1.254/24 172.17.0.254/16 10.42.1.254/24
The UDP backend is insecure and should
0n|y be used for debugging orif the kernel 172.17.0.254/16 10.42.1.254/24 172.17.0.254/16 10.42.1.254/24 172.17.0.254/16 10.42.1.254/24
does not support VxLAN.
docker0 docker0 docker0
172.17.0.254/16 172.17.0.254/16 172.17.0.254/16
flannel.l flannel.l flannel.l
IP table rules 10.42.11.32 IP table rules 10.42.11.32 IP table rules 10.42.11.32
eth0 eth0 eth0
10.129.1.101/24 10.129.1.101/24 10.129.1.101/24

- -

DIVING DEEP INTO KUBERNETES NETWORKING NETWORKING WITH CALICO

Networking with Calico

ARCHITECTURE

Calico operates at Layer 3 and assigns every workload a
routable IP address. It prefers to operate by using BGP without
an overlay network for the highest speed and efficiency, but in
scenarios where hosts cannot directly communicate with one
another, it can utilize an overlay solution such as VxLAN or IP-
in-1P.

Calico supports network policies for protecting workloads and
nodes from malicious activity or aberrant applications.

The Calico networking Pod contains a CNI container, a
container that runs an agent that tracks Pod deployments and
registers addresses and routes, and a daemon that announces
the IP and route information to the network via the Border
Gateway Protocol (BGP). The BGP daemons build a map of the
network that enables cross-host communication.

Calico requires a distributed and fault-tolerant key/value
datastore, and deployments often choose etcd to deliver this
component. Calico uses it to store metadata about routes,
virtual interfaces, and network policy objects. The Felix agentin
the calico-node Pod communicates with etcd to publish this

INSTALL CALICO WITH KUBERNETES

information. Calico can use a dedicated HA deployment of etcd,
orit can use the Kubernetes etcd datastore via the Kubernetes
API. Please see the Calico deployment documentation to
understand the functional restrictions that are present when
using the Kubernetes API for storing Calico data.

The final piece of a Calico deployment is the controller.
Although presented as a single object, it is a set of controllers
that run as a control loop within Kubernetes to manage policy,
workload endpoints, and node changes.

« The Policy Controller watches for changes in
the defined network policies and translates
them into Calico network policies.

e The Profile Controller watches for the addition
or removal of namespaces and programs
Calico objects called Profiles.

o Calico stores Pod information as workload
endpoints. The Workload Endpoint Controller
watches for updates to labels on the Pod and
updates the workload endpoints.

e The Node Controller loop watches for the
addition or removal of Kubernetes nodes and
updates the kvdb with the corresponding
data.

The latest instructions for installing Calico are present on the Calico Project website at https://docs.projectcalico.org. For this

section, you need a Kubernetes cluster running the Calico network backend.

When the cluster is ready, deploy a Pod running Nginx:

$ kubectl run nginx --image=nginx
deployment.apps “nginx® created

% kubectl get pods -o wide | grep nginx
nginx-64f497f8fd-2cdmh 1/1 Running
%

e

58s 192.168.2.245 kBs-n-4

Users can manage Calico objects within the Kubernetes cluster via the command-line tool calicoctl. The tool’s only requirement

is that it can reach the Calico datastore.

https://docs.projectcalico.org

DIVING DEEP INTO KUBERNETES NETWORKING NETWORKING WITH CALICO

% kubectl exec -it nginx-64f497f8fd-2cdah -- sbin/bash
root@nginx-64f497f8fd- 2cdmh: /&
root@nginx-64f497f8fd-2cdmh: /& 1p a
1: lo: =LOOPBACK,UP,LOWER UP> mtu 65536 qdisc nogueus state UNKNOWN group default glen LE08
Link/loopback O8:08:00:08:88:88 brd A6:00:08:06:080:80
inet 127.8.8.1/8 scope host lo
valid 1ft forever preferred 1ft forever
21 tunlO@MOME: =NOARP= mtu 1488 qdisc noop state DOWM group default glem 18088
link/ipip ©.8.8.8 brd B8.6.8.8
4: ethegiflls: <BROADCAST ,MULTICAST UP,LOWER UP= mtu 15388 gdisc nogueue state UF group default
linkSether 02:30:14:Fa:20:60 brd ff:ff:ff:Fff:ff:ff Llink-netnsid @
inet 192.168.2.245/32 scope global ethd
valid 1ft forever preferred lft forever
root@nginx-64f497181fd-Zcdmh - /&

Note the IP address and the eth0 interface within the Pod:

In the output below, note that the routing table indicates that a local interface (ca1i106d4129118£) handles traffic for the IP
address of the Pod. The calico-node Pod creates this interface and propagates the routes to other nodes in the cluster.

£ ip route get 192.168,.2.245
192, 168.2.245% dev calil@sdl29118F src 192.168.121.196
cache
%

$ ip a | grep -A 15 calilecdl29118f
113: calileedl29llaf@ifd: <BROADCAST ,MULTICAST,UP,LOWER UP= mtu 1588 gdisc nogueue state UP
Link/ether ee:ee:ee:ee:ee:ee brd friffiffffiffoff Link-netnsid 1
inets feBd::ecee:eeff:feee:eeee/b64 scope link
valid Lft forever preferred Lt forever

DIVING DEEP INTO KUBERNETES NETWORKING NETWORKING WITH CALICO

Kubernetes scheduled our Pod to run on k8s-n-1. If we look at the route table on the other two nodes, we see that each directs
192.168.2.0/24 to 70.0.80.117, which is the address of k8s-n-1.

% hostname

kEs-n-3

1

£ ip route show
default via 76.8.8.1 dev ethl proto static metric 166

70.9.0.0/16 dev ethl proto kernel scope link src 70.0.78.228
70.0.0.8/16 dev ethl proto kernel scope link src 70.0.78.228 metric 100
172.17.8.8/16 dev docker® proto kernel scope link src 172.17.8.1
192.168.8.8/24 via 78.8.78.56 dev tunl® proto bird onlink

blackhole 192.168.1.6/24 proto bird

192.168.1.11 dev caliS36e2b52742 scope link

192.168.1.18 dev cali33eB89f9%ba scope link

192.168.2.6/24 via 70.6.80.117 dev tunl® prote bird onlink
192.168.3.8/24 via 78.8.78.174 dev tunl@ proto bird onlink
192.168.4.8/24 via 70.6.78.20 dev tunld proto bird onlink
192.168.5.6/24 via 70.98.78.110 dev tunl® proto bird onlink
192.168.6.8/24 via 70.8.82.237 dev tunl® proto bird onlink
192.16B8.7.8/24 via 7T8.8.78.66 dev tunl® proto bird onlink
192.168.8.68/24 via 70.8.77.252 dev tunl® proto bird onlink
192.168.9.8/24 via 70.8.78.171 dev tunl® proto bird onlink
192.168.121.8/24 dev eth® proto kernel scope link src 192.168.121.198 metric lee
-

% hostname

kHs-n-2

3

% 1p route show
default via 76.0.0.1 dev ethl proto static metric 100
70.0.60.8/16 dev ethl prote kernel scope link src 70.0.78.174 metric 100
172.17.6.8/16 dev docker® proto kernel scope link src 172.17.6.1
192.168.8.8/24 via 78.8.78.56 dev tunl® proto bird onlink
192.168.1.8/24 via 70.6.78.228 dev tunl® proto bird onlink
152.168.2.8/24 via 78.9.88.117 dev tunl@ proto bird onlink
blackhole 192.168.3.8/24 proto bird
192.168.3.53 dev calich95a2Be6l? scope Link
192.168.4.8/24 via 70.8.78.20 dev tunl® proto bird onlink
192.168.5.8/24 via 78.8.78.118 dev tunlB® proto bird onlink
192.168.6.8/24 via 78.8.82.237 dev tunl® proto bird onlink
192.168.7.6/24 via 70.0.78.66 dev tunld proto bird onlink
192.166.8.6/24 via 70.0.77.252 dev tunl® proto bird onlink
192.168.9.6/24 via 70.8.78.171 dev tunl® proto bird onlink
192.168.121.8/24 dev ethe proto kernel scope link src 192.168.121.78 metric 188
.

DIVING DEEP INTO KUBERNETES NETWORKING NETWORKING WITH CALICO

Next, use calicoctl to show the autonomous system number (ASN) for each node in the Kubernetes cluster.

The calico-node Pods use one of two methods to build the peering relationship with external peers: global peering or per-node
peering.

Route Reflector

calico/node pod calico/node pod calico/node pod calico/node pod

A single route reflector.

Route Reﬂector E T P PPN > Route Reflector

calico/node pod calico/node pod calico/node pod calico/node pod

Multiple route reflectors configured within a Kubernetes cluster.

DIVING DEEP INTO KUBERNETES NETWORKING NETWORKING WITH CALICO

GLOBAL BGP PEERING

If the network has a device that we want to have all of the nodes peer with, we can create a global BGPPeer resource within the

cluster. Doing it this way assures that we only have to create the configuration once for it to be applied correctly everywhere.

Use the ASN retrieved above and the IP of the external peer.

To remove a global BGP peer, use the calicoctl command:

You can view the current list of BGP Peers with the following:

DIVING DEEP INTO KUBERNETES NETWORKING NETWORKING WITH CALICO

PER NODE BGP PEERING

To create a network topology where only a subset of nodes peers with certain external devices, we create a per-node BGPPeer

resource within the cluster.

As before, use the ASN for the Calico network and the IP of the BGP peer. Specify the node to which this configuration applies.

You can remove a per-node BGP peer or view the current per-node configuration with calicoctl:

DIVING DEEP INTO KUBERNETES NETWORKING NETWORKING WITH CALICO

USING IP-IN-IP

If we're unable to use BGP, perhaps because we're using a cloud provider or another environment where we have limited control
over the network or no permission to peer with other routers, Calico's IP-in-IP mode encapsulates packets before sending them to
other nodes.

To enable this mode, define the ipipMode field on the IPPool resource:

After activating IP-in-IP, Calico wraps inter-Pod packets in a new packet with headers that indicate the source of the packet is the
host with the originating Pod, and the target of the packet is the host with the destination Pod. The Linux kernel performs this
encapsulation and then forwards the packet to the destination host where it is unwrapped and delivered to the destination Pod.

IP-in-IP has two modes of operation:

1. Always: Thisisthe default mode if an IPPool resource is defined.

2. CrossSubnet: This only performs IP encapsulation for traffic which crosses subnet boundaries. Doing this
provides a performance benefit on networks where cluster members within separate Layer 2 boundaries have
routers between them because it performs encapsulation intelligently, only using it for the cross-subnet traffic.

For the crossSubnet mode to work, each Calico node must use the IP address and subnet mask for the host. For more information
on this, see the Calico documentation for IP-in-IP.

DIVING DEEP INTO KUBERNETES NETWORKING COMBINING FLANNEL AND CALICO (CANAL)

Combining Flannel and Calico (Ccmdl)

For some time an effort to integrate Flannel's easy overlay networking engine and Calico's network policy enforcement ran
under the project name Canal. The maintainers deprecated it as a separate project, and instead, the Calico documentation
contains instructions on deploying Flannel and Calico together.

They only abandoned the name and status; the result remains the same. Flannel provides an overlay network using
one of its backends, and Calico provides granular access control to the running workloads with its network policy
implementation.

Any CNI enabled Orchestrator

Orchestrator Plugins Calico CNI Plugin Flannel CNI Plugin

Calico Policy Enforcement Policy Enforcement Etcd

Calico & Flannel Networking Native UDP VXLAN

Any Network Fabric

DIVING DEEP INTO KUBERNETES NETWORKING LOAD BALANCERS AND INGRESS CONTROLLERS

THE BENEFITS OF LOAD BALANCERS
LOOd Bqlgncers Ond A load balancer provides valuable features for any

deployment, whether it's running inside or outside of the
| ng ress COﬂtrOl |erS Kubernetes cluster. In addition to distributing load across
multiple backends, a load balancer can also move TLS

processing to a central location, route traffic based on the
Up until now, we've focused on how to configure

networking and how the various providers work in
a Kubernetes cluster. While these systems define

requester's hardware or browser, the requested site, or a
path within the URL, or it can enable canary deployments

and zero-downtime upgrades.
and control communication within the cluster and

between its nodes, they do not, on their own, address

how traffic from outside of the cluster finds its way to Load Distribution

a destination or what part DNS plays in that process. When client requests arrive, the load balancer directs them
To understand the full picture, we need to explore how across a pool of worker nodes commonly referred to as
Kubernetes approaches load balancing and DNS. backends. Because the load balancer presents itself as

the endpoint for the site, the clients don't know anything

about these backends. The load balancer tracks the health

and number of connections to each backend, and it works
according to its configured policy to evenly distribute the traffic. If a backend fails or becomes overloaded, the load balancer stops
sending traffic to it until it returns to a healthy state. This scenario enables horizontal scaling, where a site can scale capacity by
adding and removing backends.

Request A

.-/ Load Balancer :-...i....» Host

Request B

@0 0000000000000 000000000000000000000000
@0 0000000000000 0000000000000000000000 00

Request C

....> Host

DIVING DEEP INTO KUBERNETES NETWORKING LOAD BALANCERS AND INGRESS CONTROLLERS

SSL/TLS Termination

The overhead of encrypting and decrypting data can impact the performance of a backend, so deployments frequently move this
work to the load balancer. Encrypted traffic lands on the load balancer, which decrypts it and forwards it to a backend. By operating
with a decrypted data stream, the load balancer can make informed decisions about how to route the data because it's now able to
see more than the basic metadata present in the flow.

www-1

- 2

Routing By HTTP Host or Path

Organizations who run multiple applications frequently group them under the same logical namespace: their domain name. In this
scenario, a load balancer routes traffic based on parameters such as the requested host or site (the Host header), or by the path
requested in the URL.

Load Balancer
1 Container

v v ; :
i web.example.com
Letschatl Letschat2
2 Containers 2 Containers 2 &
N Ngime2
: i 2 Containers 2 Containers
| |
: Mongo B
"""" 4 1 Container [

web.example.com/support web.example.com/career

DIVING DEEP INTO KUBERNETES NETWORKING

Upgrades and Feature Flags

When a load balancer receives an HTTP request, the
headers contain a wealth of extra information such
as the browser, the device, the operating system,
and more. Site maintainers can use this information
to route a subset of the traffic to a different

destination, perhaps to give an optimized experience

to a particular class of mobile device, to test a
new feature before rolling it out everywhere, or to
see the effect of different changes to the content
and determine which one has the more significant
impact.

Load balancers also provide a way to roll out
upgrades safely. Site administrators first deploy
the new version of the website or application to
anew set of backends and test it outside of the
standard rotation. When ready, they incrementally
add the new backends to the pool and rotate the
old backends out. The load balancers keep existing
traffic on the old backends and direct new traffic
to the new backends. Over time the sessions
connected to the old backends close, and only
new sessions remain. The old backends are then
terminated.

In the event of an unforeseen issue, the admins
can quickly rotate the old backends into the pool
and remove the new ones, returning the site to its
previous, working state.

Load Balancer

\4 Vi Vi
/:\
V2

Load Balancer

\4 Vi \4l

LOAD BALANCERS AND INGRESS CONTROLLERS

DIVING DEEP INTO KUBERNETES NETWORKING

LOAD BALANCERS AND INGRESS CONTROLLERS

Before

Load Balancer

v v
Neutral Neutral
Component Component

Load Balancer

Neutral Neutral
Component Component

Load Balancer

Neutral Neutral
: Component Component
After
Load Balancer
Neutral Neutral
Component Component

JANUARY 2019

34

DIVING DEEP INTO KUBERNETES NETWORKING LOAD BALANCERS AND INGRESS CONTROLLERS

LOAD BALANCING IN KUBERNETES

Kubernetes either can create internal load balancers using Kubernetes resources
such as Services and Ingresses, or it can deploy and manage external load
balancers such as those provided by AWS, GCP, F5, and others by deploying a
service of type LoadBalancer.

The easiest and simplest load balancer in Kubernetes is the Service. A Service
routes traffic via round-robin to one or more replicas running within the cluster.
The Service finds the replicas via a selector, which is a key/value pair that it looks
forin the Pod labels. Any Pod that matches the selector is a candidate for traffic,
and the Service sends each subsequent request to the next Pod in the list.

Services receive a stable IP address within the cluster, and if the cluster runs a
DNS component like KubeDNS or CoreDNS, it also receives a DNS name in the
format of {name}.{namespace}.svc.cluster.local. For example, applications
within the cluster that want to communicate with a Service named my-service

in the default namespace would send traffic tomy-service.default.sve.

cluster.local.

Client
ServicelP § kube-proxy apiserver
(IPTables)

v v v
Backend Pod 1 Backend Pod 2 Backend Pod 3
labels app-MyApp labels app-MyApp labels app-MyApp

port: 9376 port: 9376 port: 9376

When traffic arrives at the Service, kube-proxy forwards it to the appropriate
backend.

DIVING DEEP INTO KUBERNETES NETWORKING LOAD BALANCERS AND INGRESS CONTROLLERS

External Load Balancing
LAYER 4

Aload balancer that works at Layer 4 only routes traffic based on the TCP or UDP port. It does not look inside the packets or the
data stream to make any decisions.

A Kubernetes Service of the type LoadBalancer creates a Layer 4 load balancer outside of the cluster, but it only does this if the
cluster knows how. External load balancers require that the cluster use a supported cloud provider in its configuration and that the
configuration for the cloud provider includes the relevant access credentials when required.

Once created, the Status field of the service shows the address of the external load balancer.

Cloud Load Balancer

GCP Node Load Balancer Kubernetes Service GCP Node

. N Workload N i

Containers Containers Containers Containers

DIVING DEEP INTO KUBERNETES NETWORKING LOAD BALANCERS AND INGRESS CONTROLLERS

The following manifest creates an external Layer 4 load Because a Layer 4 load balancer does not look into the packet
balancer: stream, it only has basic capabilities. If a site runs multiple
applications, every one of them requires an external load
balancer. Escalating costs make that scenario inefficient.

Furthermore, because the LoadBalancer Service type
requires a supported external cloud provider, and because
Kubernetes only supports a small number of providers, many
sites instead choose to run a Layer 7 load balancer inside of the
cluster.

LAYER 7 The following manifest defines an Ingress for the site foo.bar.com, sending /foo to

the s1 Service and /bar to the s2 Service:
The Kubernetes resource that handles

load balancing at Layer 7 is called

an Ingress, and the component that
creates Ingresses is known as an Ingress
Controller.

The Ingress Resource

The Ingress resource defines the rules
and routing for a particular application.
Any number of Ingresses can exist within
a cluster, each using a combination of
host, path, or other rules to send traffic to
a Service and then on to the Pods.

DIVING DEEP INTO KUBERNETES NETWORKING LOAD BALANCERS AND INGRESS CONTROLLERS

The Ingress Controller

An Ingress Controller is a daemon, deployed as a Kubernetes pod, that listens for requests to create or modify Ingresses within the
cluster and converts the rules in the manifests into configuration directives for a load balancing component. That component is
either a software load balancer such as Nginx, HAProxy, or Traefik, or it's an external load balancer such as an Amazon ALB or an F5
Big/IP.

When working with an external load balancer the Ingress Controller is a lightweight component that translates the Ingress
resource definitions from the cluster into API calls that configure the external piece.

The following diagram shows an Ingress Controller managing an Amazon ALB.

Cloud Load Balancer

Website Nodeport Chat Nodeport Website Nodeport Chat Nodeport
Service Service Service Service

Website 1 Letschat 1 Website 2 Letschat 2

In the case of internal software load balancers, the Ingress Controller combines the management and load balancing components
into one piece. It uses the instructions in the Ingress resource to reconfigure itself.

DIVING DEEP INTO KUBERNETES NETWORKING LOAD BALANCERS AND INGRESS CONTROLLERS

The following diagram shows a Nginx Ingress Controller working within a cluster.

userdomain.com/website userdomain.com/chat userdomain.com/website userdomain.com/chat
NV

Nginx Nodeport Service

N

Nginx Nodeport Service

N 7

R E b Nginx Doemonset AEEEEEEEE R =

Nginx Ingress Controller Nginx Ingress Controller

Controller Load Balancer Controller Load Balancer

Website 1 Letschat 1 Website 2 Letschat 2

Kubernetes uses annotations to control the behavior of the Ingress Controller. Each controller has a list of accepted annotations,
and their use activates advanced features such as canary deployments, default backends, timeouts, redirects, CORS configuration,
and more.

DIVING DEEP INTO KUBERNETES NETWORKING CONCLUSION

conclusion

Kubernetes takes a simple container engine like Docker and
elevates it to a level of usability appropriate for production
environments. What starts as a series of Netfilter rules on a
single host grows with Kubernetes to span multiple hosts or
even multiple disparate networks separated by geographical
boundaries. Kubernetes networking is powerful, and after
reading this book, you're ready to make informed decisions
about which provider to use, their capabilities, and how to
leverage Kubernetes resources to connect the outside world to
the applications running inside the cluster.

	_1fob9te
	_3znysh7
	_2s8eyo1
	_17dp8vu
	_3rdcrjn
	_26in1rg
	_lnxbz9
	_35nkun2
	_1ksv4uv
	_44sinio
	_2jxsxqh
	_z337ya
	_3j2qqm3
	_1y810tw
	_4i7ojhp
	_1ci93xb
	_3whwml4
	_2bn6wsx
	_qsh70q
	_3as4poj
	_1pxezwc
	_49x2ik5
	_2p2csry
	_147n2zr
	_23ckvvd
	_ihv636
	_32hioqz
	_1hmsyys
	_41mghml
	Introduction
	Goals of this book
	How this book is organized

	An Introduction to Networking with Docker
	Docker Networking Types
	Container-to-Container Communication
	Container Communication Between Hosts

	Interlude: Netfilter and iptables rules
	An Introduction to Kubernetes Networking
	Pod Networking
	Network Policy
	Container Networking Interface

	Networking with Flannel
	Running Flannel with Kubernetes
	Flannel Backends

	Networking with Calico
	Architecture
	Install Calico with Kubernetes
	Using BGP for Route Announcements
	Using IP-in-IP

	Combining Flannel and Calico (Canal)
	Load Balancers and Ingress Controllers
	The Benefits of Load Balancers
	Load Balancing in Kubernetes

	Conclusion

