
Guide

Container
Segmentation
Strategies and Patterns

2022

Container Segmentation Strategies and Patterns2 SUSE.com

Segmentation, Container Segmentation, and
Micro-Segmentation

Container Segmentation
Strategies and Patterns

Introduction
At a recent container security conference the topic of ‘container segmentation patterns’
came up, and it became clear that many security architects are wrestling with how to best
segment workload communication in the dynamic environment of containers. The ques-
tion was also raised “Is the DMZ dead?”

The concept of network segmentation has been around for a while and is considered a
best practice to achieve ‘defense in depth’ for business critical applications. Proper seg-
mentation can protect applications from hackers as well as limit the ‘blast radius’ in the
case of a breach. So it makes sense that devops and security professionals would wonder
if container segmentation would provide similar protections for a container network, and
how this could be possible with network plug-ins, CNIs, and SDNs.

Old Ways of Segmentation – Patterns
Before we get into how container segmentation works let’s review some of the common
traditional patterns for achieving network segmentation:

• The DMZ. All external access including internet application front-ends such as web servers are
placed in the DMZ, which uses perimeter firewalls to restrict inbound and outbound traffic.

• Physical Network Segments. Even behind the DMZ, different network segments are used for
applications with different trust levels and to further segment communication to sensitive
data such as databases. Perimeter firewalls are used to contain traffic in each segment.

• Data Center Segmentation. In extreme cases, segmentation is achieved by placing appli-
cations and infrastructure in separate data centers, each with its own security protections.

• VPC and Security Groups. More recently, in public cloud services VPCs and security
groups are used to segment traffic with network segmentation policies and ingress/
egress firewall rules easily applied to different VPCs. However, this is still a tedious
manual configuration of L3/L4 policies that can’t protect containers.

https://www.gartner.com/document/3393518

2022

Container Segmentation Strategies and Patterns3 SUSE.com

• Separate Data and Control Networks. Less common but with the same goal of sepa-
rating traffic to control attacks, control plane and monitoring traffic is segmented on
each server to separate them from data transmissions, minimizing the possibility of
data breaches from monitoring and system tools.

The patterns above all attempt to segment network communications according to vary-
ing trust levels of the applications running in each segment. One commonality between
them is the use of physical network controls and traditional firewalls to separate traffic.
Even VPCs are based on traditional notions of a physical network segment. As we’ll dis-
cover later, in a truly cloud native environment, these segmentation techniques become
increasingly ineffective as workloads become dynamically deployed across traditional
network boundaries.

The DMZ is Dead, Or Is It?
The general consensus around the room at this gathering of container security and op-
erations people was that ‘the DMZ is dead.’ In this world of overlay networks, Kubernetes
and public cloud providers, the old way of thinking of a DMZ to segment all internet facing
applications is no longer relevant. In reality, DMZs will still exist, but they will be almost
invisible, or irrelevant, to the security discussion, because they are not the primary way to
protect access to applications and databases.

Given this realization, how do security architects provide network visibility and protec-
tion in an environment where external access frequently comes through an ingress into
a container cluster directly from the internet? In addition, ingress/egress connections to
container based api services must be allowed in what was traditionally considered an
‘east-west’ flow of traffic. It seems in cloud environments that the definitions of north-
south and east-west traffic are becoming blurred.

https://neuvector.com/network-security/securing-east-west-traffic-in-container-based-data-center/

2022

Container Segmentation Strategies and Patterns4 SUSE.com

What is Segmentation in a Cloud- native,
Container-based World?
Container segmentation is the practice of segmenting container communications so only
authorized connections between containers are allowed. In practice, because containers are
typically created from a service concept by orchestration tools such as Kubernetes, container
segmentation can be enforced at the service level. Multiple containers scaling up from the
same image/service should not require different network segmentation policies in most cases.

For example, these are layer 7 segmentation rules from the NeuVector console.

These whitelist rules allow connections from one Kubernetes service (all pods) to another
and requires a certain protocol to be used. For example, rule 10002 requires the redis ap-
plication protocol between the nodejs demo pods and redis demo pods.

Container segmentation is often called micro-segmentation or nano-segmentation
because containers are often deployed as microservices which can be dynamically
deployed and scaled across a Kubernetes cluster. Because different services can be
deployed across a shared network and servers (or VMs, hosts), and each workload or
pod has its own network addressable IP address, container segmentation policies can be
difficult to create and enforce.

However, without the ability to segment container connections and enforce network
restrictions the blast radius of an attack can be the entire cluster, or worse yet, the entire
container deployment across clouds.

What’s needed is more of a virtualized network segmentation capability that is aligned
more tightly with how cloud-native container services are deployed, as shown below.

Container segmentation can provide the required protection regardless of where the work-
load is deployed and give confidence to the security and devops teams that unauthorized
connections between segments can be prevented, or at least detected and alerted.

2022

Container Segmentation Strategies and Patterns5 SUSE.com

What About Namespaces? Network Policy?
Going back to the container security gathering of experts, the general agreement was
that namespaces can NOT be trusted to enforce container segmentation policies. While
namespaces do provide some level of segmentation between containerized services,
security teams should not rely of them for defense in depth. The built-in Network Policy
features of Kubernetes were also deemed to be not practical for most business critical
deployments. These opinions were due to a number of cited reasons:

1. Recent demonstrations of breaching namespace boundaries.
2. Cumbersome granularity of segmentation policies.
3. Lack of policy management framework.
4. Lack of visibility and monitoring.
5. Inability to detect network attacks within trusted connections.

Namespaces were found to be useful for organizing services and to ease the management
of such services where each service in a namespace has some attribute in common with
others to make them manageable as a group. But, don’t use namespaces for your container
segmentation strategy.

Will a Service Mesh Do Segmentation?
The excitement about service mesh technologies like Istio and Linkerd2 is driven by the
promise of an application discovery and routing layer for containers which has some
security features built-in. But there is a difference between a Layer 7 load balancer with
security features and a true security product like a Layer 7 container firewall. Security
features in service meshes include the ability to do authentication, authorization, and en-
cryption of connections. By authorizing connections between containers based on defined
policies, a service mesh has the ability to do segmentation for certain HTTP protocols.

Limitations to keep in mind about using a service mesh for segmentation include:

• Does not support all HTTP protocols, nor ICMP, or UDP. If you have applications requiring
other protocol support you will need a multi-protocol container firewall.

• Has no visibility into policy violations. If a connection attempt is blocked, is there log-
ging of the event which makes it easy to drill down into the source and destination
service names and IP addresses, network payload used, and other forensic details?

• Can’t detect embedded network based attacks within trusted connections. A container
firewall should be able to inspect network payloads for embedded application attacks
such as SQL injection, even in authorized trusted connections.

• Can’t perform DLP functions. Can’t inspect connections for sensitive data such as credit
cards and PII.

https://neuvector.com/run-time-container-security/

2022

Container Segmentation Strategies and Patterns6 SUSE.com

• Does not provide other alerting and network forensic capabilities. There are many
required features in a true container security product such as alerting, response rules,
packet captures and enterprise integration hooks.

• Lacks management and automation. Authorization policies must be defined manually.
Although these can be automated during deployment, the creation and management
of these policies is difficult to centrally administer and review.

It is therefore important to consider the protocol requirements for containerized applications
today as well as for the next few years, as well as the desired level of security required for
your applications. Modern container security tools should be integrated with service mesh
technology to provide defense in depth, and enhance those built-in security features.

Layer 7 Container Segmentation
Segmentation of network traffic can be done at Layer 3/4 based on IP addresses and ports,
but in cloud-native environments this is best done at Layer 7 to detect and verify the ap-
plication protocol used. This provides better scalability, manageability, and flexibility for
deployments to change without needing to change security rules. An added benefit of Layer
7 deep packet inspection is the ability for the container firewall to inspect network traffic for
hidden, or embedded attacks, even within trusted connections between workloads.

Multi-protocol Layer 7 segmentation provides detection and enforcement of connections
across multiple application protocols and should also support non-HTTP protocols such as
ICMP and UDP.

True Workload Segmentation Across Clusters, Clouds
With a cloud-native, Layer 7 container segmentation solution, workloads can be segmented
even if they are running on the same host, network, or cluster. The ability to mix workloads
of different required trust levels on the same infrastructure provides the ultimate flexibility
for architects and devops teams to maximize performance, resource utilization, and speed
up the pipeline. It also limits the blast radius if one set of services is hacked from spreading
laterally onto other workloads, even if running on the same host.

Container Segmentation Patterns
Containers and orchestration tools like Kubernetes are relatively new, so there will be
many experiments using combinations of old and new technologies to achieve container
segmentation. Use of traditional segmentation patterns based on physical networks as
described above may provide temporary protections for containers while sacrificing many

https://neuvector.com/container-security/secure-containers-istio-service-mesh/

2022

Container Segmentation Strategies and Patterns7 SUSE.com

of the main benefits such as scalability and resource optimization. Here are a few example
patterns, some a mix of old and new, and some which can only be achieved with cloud-
native container firewalls.

• Separate Clusters. It is probably most common to see multiple clusters being deployed.
This is due to different reasons, with security focused network segmentation being only
one of them.
• Security focused. Application workloads with different security protection levels can

be separated by Kubernetes clusters. This makes isolating traffic easier by using
traditional firewalls or VPCs to prevent cross-cluster communication. If connections
between clusters are required then it can be manually allowed but management
can become cumbersome and error prone.
• For example, one cluster runs the application workloads and a separate one run-

ning databases, file storage (such as S3/minio) and other persistent storage for
the same project because different security profiles are required for each cluster.

• Cluster Manageability. More often, separate clusters are deployed primarily for man-
ageability reasons, with security being a secondary consideration. Separation can be
based on:
• Application Characteristics. For example, separate stateless and stateful clusters

where management of services and workloads follows different processes. In the
same example above separating application workloads from databases, the reason
may include or be only due to the fact that each cluster requires different workload
management approaches for rolling updates, backups, persistent data, etc.

• Platform Management. Separating update and maintenance of the orchestration
platforms and tools. For example, updating the Kubernetes version with all system
containers and integrations may require a different process depending on the ap-
plication workload requirements in the cluster.

• Organizational. Separate clusters for divisions, departments, development teams or
other reasons tied to how teams are organized.

• Other deployment patterns we’ve seen could be based on availability of cloud
resources in specific regions for public cloud providers, for example applications
requiring GPU instances.

• Container Zones. Many companies think of clusters as zones, with each zone representing
a collection of related services and/or services with similar security requirements. Al-
though typically one cluster is deployed per zone, a container cluster could span multiple
zones. The segmentation policies are based on the connection requirements in each zone,
but typically focus on ingress and egress policies between zones and to the internet.

• One Large Cluster. Multiple application stacks, services, and workloads can be dynami-
cally deployed in a large shared cluster. While this may present manageability issues
described above, it may simplify maintenance of the orchestration platform and opti-
mize resource utilization. Security issues, especially network segmentation policies for
each service running in the cluster must be carefully managed and monitored to protect
against lateral movement of attacks between workloads.

2022

Container Segmentation Strategies and Patterns8 SUSE.com

• Cross cluster routing with Service Mesh. Cross cluster connections are made more
dynamic with service mesh technologies like Istio. While cross cluster routing can be
secured to some extent by using the authorization features of the service mesh, business
critical applications will need true Layer 7 container firewalling described above to protect
against embedded attacks, detect multiple protocols, and make container segmentation
policies manageable and scalable.

Segmentation for Compliance – PCI- DSS
One segmentation pattern of particular interest is for PCI-DSS compliance. Sections 1.2 and
1.3 of PCI-DSS require in-scope CDE traffic to be firewalled and segmented from all other
connections. Traditionally, this was accomplished by using separate networks separated by
traditional firewalls.

While it is certainly possible to repeat this pattern for cloud native applications, doing so
will ultimately add more friction to the modern CI/CD and deployment pipelines, as well as
increase costs and reduce resource utilization of separate clusters. This means all of the
potential benefit of cloud-native applications will not be possible to be realized.

The better solution is to achieve network segmentation automatically between CDE and
non-CDE workloads, even if they are running on the same host, network, cluster, or cloud, as
shown below.

In the diagram above, the nodes are containers (not hosts) which can run dynamically
across any host within the cluster. They can be segmented virtually by service names,
labels, application protocols or other application metadata.

https://neuvector.com/container-security/pci-compliance-containers/

2022

Container Segmentation Strategies and Patterns9 SUSE.com

NeuVector Container Segmentation
NeuVector provides a true cloud-native Layer 7 container firewall which does network
segmentation automatically. By using behavioral learning, connections and the applica-
tion protocols used between services are discovered and whitelist rules to isolate them are
automatically created. This means that container segmentation is easy and automated,
without requiring knowledge of connections beforehand or the manual creation and main-
tenance of segmentation rules.

In the screenshot below, NeuVector provides a virtual view of container segmentation rules,
violations, attacks and vulnerabilities regardless of the physical hosts in use. This also shows
service mesh enabled pods where an Istio sidecar container is used for encryption.

For more advanced users, NeuVector supports a declarative security policy where applica-
tion level (e.g. Layer 7) policies can be specified during the CI/CD process by devops teams
in order to fully automate the new releases or updating of application services. For example,
the following is an example of how DevOps can declare the security rules in NeuVector in a
yaml file as part of the application deployment process.

https://neuvector.com/run-time-container-security/

2022

Container Segmentation Strategies and Patterns10 SUSE.com

The example above creates the simple whitelist rule to allow the nodejs pods to con-
nect to the redis pods only using the redis application protocol. The simplicity of such a
layer 7 rule makes it scalable, flexible, and easy to manage. It also supports the ‘shift-left’
movement to push security further into the DevOps part of the pipeline, supporting faster
deployments with automation.

All segmentation policies are centrally viewed, managed, and monitored so that conflicting
rules are not created or connections start failing due to a forgotten deployment manifest.

2022

Container Segmentation Strategies and Patterns11 SUSE.com

Beyond container segmentation, NeuVector provides a complete Kubernetes security
platform to secure the CI/CD pipeline from build to ship to run. Image vulnerability scan-
ning starts during the build process and continuously monitors them for new vulnerabili-
ties as soon as they’re deployed.

The run-time container security is provided by Layer 7 container firewall together with
container process and file system security, as well as host security. The container firewall
detects threats such as sql injections, DDoS, DNS attacks and other application layer
attacks by inspecting the payload even for trusted connections. It is integrated with new
service mesh technologies to provide threat detection and segmentation even if the con-
nection between two pods is encrypted.

In this way, NeuVector can provide multi-vector threat protection with the combination of
network security, application security, endpoint security, and host security.

The Ultimate Cloud Security Pattern – Container
Segmentation by Workload
Ultimately, to give the business the most flexibility for rapid release and optimal resource
utilization, container segmentation must be enforced on each pod and follow application
workloads as they scale and move dynamically. In this micro-perimeter vision article,
NeuVector CTO Gary Duan outlines a vision for cloud security where the protection perim-
eter surrounds the workload even as it moves across hybrid clouds.

Next Steps
Want to learn more?

Contact NeuVector at https://neuvector.com for more container security articles on our blog
and to schedule a demo of the NeuVector Container Security Platform, including the Layer 7
Container Firewall.

https://neuvector.com/container-security/secure-containers-istio-service-mesh/
https://neuvector.com/container-security/secure-containers-istio-service-mesh/
https://neuvector.com/cloud-security/container-security-micro-perimeters/
https://neuvector.com

© 2022 SUSE LLC. All Rights Reserved. SUSE and
the SUSE logo are registered trademarks of SUSE
LLC in the United States and other countries. All
third-party trademarks are the property of their
respective owners.

For more information, contact SUSE at:

+1 800 796 3700 (U.S./Canada)

+49 (0)911-740 53-0 (Worldwide)

SUSE

Maxfeldstrasse 5

90409 Nuremberg

www.suse.com

Innovate
Everywhere

2022

